If A, B are posets, a function f: A → B is residuated if and only if the preimage under f of every principal down-set of B is a principal down-set of A.
If B is a poset, the set of functions A → B can be ordered by the pointwise order f ≤ g ↔ (∀x ∈ A) f(x) ≤ g(x).
It can be shown that a monotone function f is residuated if and only if there exists a (necessarily unique) monotone function f +: B → A such that f o f + ≤ idB and f + o f ≥ idA, where id is the identity function. The function f + is the residual of f. A residuated function and its residual form a Galois connection under the (more recent) monotone definition of that concept, and for every (monotone) Galois connection the lower adjoint is residuated with the residual being the upper adjoint.2 Therefore, the notions of monotone Galois connection and residuated mapping essentially coincide.
Additionally, we have f -1(↓{b}) = ↓{f +(b)}.
If B° denotes the dual order (opposite poset) to B then f : A → B is a residuated mapping if and only if there exists an f * such that f : A → B° and f *: B° → A form a Galois connection under the original antitone definition of this notion.
If f : A → B and g : B → C are residuated mappings, then so is the function composition gf : A → C, with residual (gf) + = f +g +. The antitone Galois connections do not share this property.
The set of monotone transformations (functions) over a poset is an ordered monoid with the pointwise order, and so is the set of residuated transformations.3
If • : P × Q → R is a binary map and P, Q, and R are posets, then one may define residuation component-wise for the left and right translations, i.e. multiplication by a fixed element. For an element x in P define xλ(y) = x • y, and for x in Q define λx(y) = y • x. Then • is said to be residuated if and only if xλ and λx are residuated for all x (in P and respectively Q). Left (and respectively right) division are defined by taking the residuals of the left (and respectively right) translations: x\y = (xλ)+(y) and x/y = (λx)+(y)
For example, every ordered group is residuated, and the division defined by the above coincides with notion of division in a group. A less trivial example is the set Matn(B) of square matrices over a boolean algebra B, where the matrices are ordered pointwise. The pointwise order endows Matn(B) with pointwise meets, joins and complements. Matrix multiplication is defined in the usual manner with the "product" being a meet, and the "sum" a join. It can be shown4 that X\Y = (Y tX ′)′ and X/Y = (X ′Y t)′, where X ′ is the complement of X, and Y t is the transposed matrix).
Denecke, p. 95; Galatos, p. 148 ↩
Erné, Proposition 4 ↩
Blyth, 2005, p. 193 ↩
Blyth, p. 198 ↩