In 1938 Doodeve and Kitchener discovered that TiO2 , a highly-stable and non-toxic oxide, in the presence of oxygen could act as a photosensitizer for bleaching dyes, as ultraviolet light absorbed by TiO2 led to the production of active oxygen species on its surface, resulting in the blotching of organic chemicals via photooxidation. This was the first observation of the fundamental characteristics of heterogeneous photocatalysis.
Research in photocatalysis again paused until 1964, when V.N. Filimonov investigated isopropanol photooxidation from ZnO and TiO2 ; while in 1965 Kato and Mashio, Doerffler and Hauffe, and Ikekawa et al. (1965) explored oxidation/photooxidation of CO2 and organic solvents from ZnO radiance. In 1970, Formenti et al. and Tanaka and Blyholde observed the oxidation of various alkenes and the photocatalytic decay of N2O, respectively.
For many decades photocatalysis had not been developed for commercial purposes. However, in 2023 multiple patents were granted to a U.S. company, (Pure-Light Technologies, Inc.) that has developed various formulas and processes that allow for widespread commercialization for VOC reduction and germicidal action. Chu et al. (2017) assessed the future of electrochemical photolysis of water, discussing its major challenge of developing a cost-effective, energy-efficient photoelectrochemical (PEC) tandem cell, which would, “mimic natural photosynthesis".
In one mechanism of the oxidative reaction, holes react with the moisture present on the surface and produce a hydroxyl radical. The reaction starts by photo-induced exciton generation in the metal oxide (MO) surface by photon (hv) absorption:
MO + hν → MO (h+ + e−)
In homogeneous photocatalysis, the reactants and the photocatalysts exist in the same phase. The process by which the atmosphere self-cleans and removes large organic compounds is a gas phase homogenous photocatalysis reaction. The ozone process is often referenced when developing many photocatalysts:
2
O
3
(
g
)
+
H
2
O
(
g
)
→
h
v
O
2
(
g
)
+
2
OH
⋅
{\displaystyle {\ce {2 O3(g) + H2O(g) ->[{hv}] O2(g) + 2OH.}}}
Iron complex hydroxy-radical formation using the ozone process is common in the production of hydrogen fuel (similar to Fenton's reagent process done in low pH conditions without photoexcitation):
Fe
2
+
+
H
2
O
2
→
h
v
Fe
3
+
+
OH
−
+
HO
⋅
{\displaystyle {\ce {Fe^2+ +H2O2 ->[{hv}] Fe^3+ +OH- + HO.}}}
Fe
3
+
+
H
2
O
2
→
h
v
Fe
2
+
H
+
+
HO
2
⋅
{\displaystyle {\ce {Fe^3+ +H2O2 ->[{hv}] Fe^2+ H+ + HO2.}}}
Fe
2
+
+
HO
⋅
⟶
Fe
3
+
+
OH
−
{\displaystyle {\ce {Fe^2+ +HO. -> Fe^3+ +OH-}}}
Complex-based photocatalysts are semiconductors, and operate under the same electronic properties as heterogeneous catalysts.
Photoactive catalysts have been introduced over the last decade, such as TiO2 and ZnO nanorods. Most suffer from the fact that they can only perform under UV irradiation due to their band structure. Other photocatalysts, including a graphene-ZnO nanocompound counter this problem. For several decades, there have been numerous attempts to develop active photocatalysts with broad light absorption capabilities. High-entropy photocatalysts, first introduced in 2020, are the result of one such effort. They have been utilized for hydrogen production, oxygen production, carbon dioxide conversion, and plastic waste conversion.
The most prevalently investigated material, TiO2 , is inefficient. Mixtures of TiO2 and nickel oxide (NiO) are more active. NiO allows a significant explоitation of the visible spectrum. One efficient photocatalyst in the UV range is based on sodium tantalite (NaTaO3) doped with lanthanum and loaded with a nickel oxide cocatalyst. The surface is grooved with nanosteps from doping with lanthanum (3–15 nm range, see nanotechnology). The NiO particles are present on the edges, with the oxygen evolving from the grooves.
ePaint is a less-toxic alternative to conventional antifouling marine paints that generates hydrogen peroxide.
Photocatalysis of organic reactions by polypyridyl complexes, porphyrins, or other dyes can produce materials inaccessible by classical approaches. Most photocatalytic dye degradation studies have employed TiO2. The anatase form of TiO2 has higher photon absorption characteristics.
ISO 22197-1:2007 specifies a test method for the measurement of NO2 removal for materials that contain a photocatalyst or have superficial photocatalytic films.
Mass spectrometry allows measurement of photocatalytic activity by tracking the decomposition of gaseous pollutants such as nitrogen NOx or CO2.
IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Photcatalyst". doi:10.1351/goldbook.PT07446 /wiki/International_Union_of_Pure_and_Applied_Chemistry
Bertucci, Simone; Lova, Paola (May 2024). "Exploring Solar Energy Solutions for Per- and Polyfluoroalkyl Substances Degradation: Advancements and Future Directions in Photocatalytic Processes". Solar RRL. 8 (9). doi:10.1002/solr.202400116. https://doi.org/10.1002%2Fsolr.202400116
Eibner, Alexander (1911). "Action of Light on Pigments I". Chem-ZTG. 35: 753–755.
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Bruner, L.; Kozak, J. (1911). "Information on the Photocatalysis I The Light Reaction in Uranium Salt Plus Oxalic Acid Mixtures". Elktrochem Agnew P. 17: 354–360.
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Landau, M. (1913). "Le Phénomène de la Photocatalyse". Compt. Rend. 156: 1894–1896.
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Baly, E.C.C.; Helilbron, I.M.; Barker, W.F. (1921). "Photocatalysis. Part I. The Synthesis of Formaldehyde and Carbohydrates from Carbon Dioxide and Water". J Chem Soc. 119: 1025–1035. doi:10.1039/CT9211901025. https://zenodo.org/record/1503399
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Goodeve, C.F.; Kitchener, J.A. (1938). "The Mechanism of Photosensitization by Solids". Transactions of the Faraday Society. 34: 902–912. doi:10.1039/tf9383400902. /wiki/Doi_(identifier)
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Filimonov, V.N. (1964). "Photocatalytic Oxidation of Gaseous Isopropanol on ZnO + TiO2". Dokl. Akad. Nauk SSSR. 154 (4): 922–925.
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Ikekawa, A.; Kamiya, M.; Fujita, Y.; Kwan, T. (1965). "On the Competition of Homogeneous and Heterogeneous Chain Terminations in Heterogeneous Photooxidation Catalysis by Zinc Oxide". Bulletin of the Chemical Society of Japan. 38: 32–36. doi:10.1246/bcsj.38.32. /wiki/Doi_(identifier)
Doerffler, W.; Hauffe, K. (1964). "Heterogeneous Photocatalysis I. Influence of Oxidizing and Reducing Gases on the Electrical Conductivity of Dark and Illuminated Zinc Oxide Surfaces". J Catal. 3 (2): 156–170. doi:10.1016/0021-9517(64)90123-X. /wiki/Doi_(identifier)
Kato, S.; Mashio, F. (1964). "Titanium Dioxide-Photocatalyzed Liquid Phase Oxidation of Tetralin". The Journal of the Society of Chemical Industry, Japan. 67 (8): 1136–1140. doi:10.1246/nikkashi1898.67.8_1136. https://doi.org/10.1246%2Fnikkashi1898.67.8_1136
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Formenti, M.; Julliet F., F.; Teichner SJ, S.J. (1970). "Controlled Photooxidation of Paraffins and Olefins over Anatase at Room Temperature". Comptes Rendus de l'Académie des Sciences, Série C. 270C: 138–141.
Tanaka, K.I.; Blyholde, G. (1970). "Photocatalytic and Thermal Catalytic Decomposition of Nitrous Oxide on Zinc Oxide". J. Chem. Soc. D. 18 (18): 1130. doi:10.1039/c29700001130. /wiki/Doi_(identifier)
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Fujishima, A.; Honda, K. (1972). "Electrochemical Photolysis of Water at a Semiconductor Electrode". Nature. 238 (5358): 37–38. Bibcode:1972Natur.238...37F. doi:10.1038/238037a0. PMID 12635268. /wiki/Bibcode_(identifier)
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Nozik, A.J. (1977). "Photochemical Diodes". Appl Phys Lett. 30 (11): 567–570. Bibcode:1977ApPhL..30..567N. doi:10.1063/1.89262. /wiki/Bibcode_(identifier)
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Wagner, F.T.; Somorjai, G.A. (1980). "Photocatalytic and Photoelectrochemical Hydrogen Production on Strontium Titanate Single Crystals". J Am Chem Soc. 102 (17): 5494–5502. Bibcode:1980JAChS.102.5494W. doi:10.1021/ja00537a013. https://escholarship.org/uc/item/72f8n0w6
Sakata, T.; Kawai, T. (1981). "Heterogeneous Photocatalytic Production of Hydrogen and Methane from Ethanol and Water". Chem Phys Lett. 80 (2): 341–344. Bibcode:1981CPL....80..341S. doi:10.1016/0009-2614(81)80121-2. /wiki/Bibcode_(identifier)
R Young. US Patents 11,906,157; 11,680,506;17/393,065
Coronado, Juan M.; Fresno, Fernando; Hernández-Alonso, María D.; Portela, Racquel (2013). Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. London: Springer. pp. 1–5. doi:10.1007/978-1-4471-5061-9. hdl:10261/162776. ISBN 978-1-4471-5061-9. 978-1-4471-5061-9
Chu, S.; Li, W.; Yan, Y.; Hamann, T.; Shih, I.; Wang, D.; Mi, Z. (2017). "Roadmap on Solar Water Splitting: Current Status and Future Prospects". Nano Futures. 1 (2). IOP Publishing Ltd: 022001. Bibcode:2017NanoF...1b2001C. doi:10.1088/2399-1984/aa88a1. /wiki/Bibcode_(identifier)
Linsebigler, Amy L.; Lu, Guangquan.; Yates, John T. (1995). "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. /wiki/Doi_(identifier)
Linsebigler, Amy L.; Lu, Guangquan.; Yates, John T. (1995). "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. /wiki/Doi_(identifier)
Ibhadon, Alex; Fitzpatrick, Paul (2013-03-01). "Heterogeneous Photocatalysis: Recent Advances and Applications". Catalysts. 3 (1): 189–218. doi:10.3390/catal3010189. This article incorporates text from this source, which is available under the CC BY-SA 3.0 license. https://doi.org/10.3390%2Fcatal3010189
Karvinena, Saila; Hirvab, Pipsa; Pakkanen, Tapani A (2003). "Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2". Journal of Molecular Structure: Theochem. 626 (1–3): 271–277. doi:10.1016/S0166-1280(03)00108-8. /wiki/Doi_(identifier)
Daneshvar, N; Salari, D; Khataee, A.R (2004). "Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2". Journal of Photochemistry and Photobiology A: Chemistry. 162 (2–3): 317–322. doi:10.1016/S1010-6030(03)00378-2. /wiki/Doi_(identifier)
Fuchigami, Toshio; Inagi, Shinsuke; Atobe, Mahito, eds. (2014-10-18), "Appendix B: Tables of Physical Data", Fundamentals and Applications of Organic Electrochemistry, Chichester, United Kingdom: John Wiley & Sons Ltd, pp. 217–222, doi:10.1002/9781118670750.app2, ISBN 978-1-118-67075-0 978-1-118-67075-0
Ibhadon, Alex; Fitzpatrick, Paul (2013-03-01). "Heterogeneous Photocatalysis: Recent Advances and Applications". Catalysts. 3 (1): 189–218. doi:10.3390/catal3010189. This article incorporates text from this source, which is available under the CC BY-SA 3.0 license. https://doi.org/10.3390%2Fcatal3010189
Ibhadon, Alex; Fitzpatrick, Paul (2013-03-01). "Heterogeneous Photocatalysis: Recent Advances and Applications". Catalysts. 3 (1): 189–218. doi:10.3390/catal3010189. This article incorporates text from this source, which is available under the CC BY-SA 3.0 license. https://doi.org/10.3390%2Fcatal3010189
Ibhadon, Alex; Fitzpatrick, Paul (2013-03-01). "Heterogeneous Photocatalysis: Recent Advances and Applications". Catalysts. 3 (1): 189–218. doi:10.3390/catal3010189. This article incorporates text from this source, which is available under the CC BY-SA 3.0 license. https://doi.org/10.3390%2Fcatal3010189
He, Fei; Jeon, Woojung; Choi, Wonyong (2021-05-05). "Photocatalytic air purification mimicking the self-cleaning process of the atmosphere". Nature Communications. 12 (1): 2528. Bibcode:2021NatCo..12.2528H. doi:10.1038/s41467-021-22839-0. PMC 8100154. PMID 33953206. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100154
Tahir, Muhammad Bilal; Iqbal, Tahir; Rafique, Muhammad; Rafique, Muhammad Shahid; Nawaz, Tasmia; Sagir, M. (2020). "Nanomaterials for photocatalysis". Nanotechnology and Photocatalysis for Environmental Applications. pp. 65–76. doi:10.1016/B978-0-12-821192-2.00005-X. ISBN 978-0-12-821192-2. 978-0-12-821192-2
Tahir, Muhammad Bilal; Iqbal, Tahir; Rafique, Muhammad; Rafique, Muhammad Shahid; Nawaz, Tasmia; Sagir, M. (2020). "Nanomaterials for photocatalysis". Nanotechnology and Photocatalysis for Environmental Applications. pp. 65–76. doi:10.1016/B978-0-12-821192-2.00005-X. ISBN 978-0-12-821192-2. 978-0-12-821192-2
Tahir, Muhammad Bilal; Iqbal, Tahir; Rafique, Muhammad; Rafique, Muhammad Shahid; Nawaz, Tasmia; Sagir, M. (2020). "Nanomaterials for photocatalysis". Nanotechnology and Photocatalysis for Environmental Applications. pp. 65–76. doi:10.1016/B978-0-12-821192-2.00005-X. ISBN 978-0-12-821192-2. 978-0-12-821192-2
Nguyen, Chinh Chien; Nguyen, Dang Le Tri; Nguyen, Dinh Minh Tuan; Nguyen, Van-Huy; Nanda, Sonil; Vo, Dai-Viet N.; Shokouhimehr, Mohammadreza; Do, Ha Huu; Kim, Soo Young; Van Le, Quyet (2021). "Nanostructured photocatalysts: Introduction to photocatalytic mechanism and nanomaterials for energy and environmental applications". Nanostructured Photocatalysts. pp. 3–33. doi:10.1016/B978-0-12-823007-7.00003-1. ISBN 978-0-12-823007-7. 978-0-12-823007-7
Blain, Loz (2022-11-02). "Light-powered catalyst makes profitable hydrogen from stinky waste gas". New Atlas. Retrieved 2022-11-30. https://newatlas.com/energy/hydrogen-sulfide-remediation/
Blain, Loz (2022-11-29). "Revolutionary photocatalyst is huge news for green hydrogen and ammonia". New Atlas. Retrieved 2022-11-30. https://newatlas.com/energy/light-catalyst-ammonia-rice/
Rouzafzay, F.; Shidpour, R. (2020). "Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation". Alloys and Compounds. 829: 154614. doi:10.1016/J.JALLCOM.2020.154614. /wiki/Doi_(identifier)
Edalati, P.; Wang, Q.; Razavi-khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. (February 2020). "Photocatalytic hydrogen evolution on a high-entropy oxide". Journal of Materials Chemistry A. 8 (7): 3814–3821. doi:10.1039/C9TA12846H. /wiki/Doi_(identifier)
Hai, H.T.N.; Nguyen, T.T.; Nishibori, M.; Ishihara, T.; Edalati, K. (May 2025). "Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure". Applied Catalysis B. 365: 124968. arXiv:2412.18722. Bibcode:2025AppCB.36524968H. doi:10.1016/j.apcatb.2024.124968. /wiki/ArXiv_(identifier)
Sandberg, Mats; Håkansson, Karl; Granberg, Hjalmar (2020-10-01). "Paper machine manufactured photocatalysts - Lateral variations". Journal of Environmental Chemical Engineering. 8 (5): 104075. doi:10.1016/j.jece.2020.104075. https://doi.org/10.1016%2Fj.jece.2020.104075
Nunes, Daniela; Pimentel, Ana; Branquinho, Rita; Fortunato, Elvira; Martins, Rodrigo (2021-04-16). "Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation". Catalysts. 11 (4): 504. doi:10.3390/catal11040504. hdl:10362/124574. https://doi.org/10.3390%2Fcatal11040504
Kudo, Akihiko; Kato, Hideki; Tsuji, Issei (2004). "Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting". Chemistry Letters. 33 (12): 1534. doi:10.1002/chin.200513248. /wiki/Doi_(identifier)
Banić, Nemanja; Krstić, Jugoslav; Stojadinović, Stevan; Brnović, Anđela; Djordjevic, Aleksandar; Abramović, Biljana (September 2020). "Commercial TiO 2 loaded with NiO for improving photocatalytic hydrоgen prоduction in the presence оf simulated solar radiation". International Journal of Energy Research. 44 (11): 8951–8963. doi:10.1002/er.5604. https://doi.org/10.1002%2Fer.5604
"Snapcat Photo Catalytic Oxidation with TIO2 (2005)". CaluTech UV Air. Retrieved 2006-12-05. http://www.calutech.com/photocatalytic-oxidation.htm
Kondrakov AO, Ignatev AN, Lunin VV, Frimmel FH, Braese S, Horn H (2016). "Roles of water and dissolved oxygen in photocatalytic generation of free OH radicals in aqueous TiO2 suspensions: An isotope labeling study". Applied Catalysis B: Environmental. 182: 424–430. doi:10.1016/j.apcatb.2015.09.038. /wiki/Doi_(identifier)
"Photocatalysis Applications of TiO2". Titanium Information. titaniumart.com. http://www.titaniumart.com/photocatalysis-ti02.html
Kondrakov AO, Ignatev AN, Frimmel FH, Braese S, Horn H, Revelsky AI (2014). "Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: A comparative study". Applied Catalysis B: Environmental. 160: 106–114. doi:10.1016/j.apcatb.2014.05.007. /wiki/Doi_(identifier)
Banerjee, Swagata; Dionysiou, Dionysios D.; Pillai, Suresh C. (October 2015). "Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis". Applied Catalysis B: Environmental. 176–177: 396–428. doi:10.1016/j.apcatb.2015.03.058. /wiki/Doi_(identifier)
Shafiq, Iqrash; Hussain, Murid; Shehzad, Nasir; Maafa, Ibrahim M.; Akhter, Parveen; Amjad, Um-e-salma; Shafique, Sumeer; Razzaq, Abdul; Yang, Wenshu; Tahir, Muhammad; Russo, Nunzio (August 2019). "The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue". Journal of Environmental Chemical Engineering. 7 (4): 103265. doi:10.1016/j.jece.2019.103265. /wiki/Doi_(identifier)
McCullagh C, Robertson JM, Bahnemann DW, Robertson PK (2007). "The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review". Research on Chemical Intermediates. 33 (3–5): 359–375. doi:10.1163/156856707779238775. /wiki/Doi_(identifier)
Hanaor, Dorian A. H.; Sorrell, Charles C. (2014). "Sand Supported Mixed-Phase TiO2 Photocatalysts for Water Decontamination Applications". Advanced Engineering Materials. 16 (2): 248–254. arXiv:1404.2652. Bibcode:2014arXiv1404.2652H. doi:10.1002/adem.201300259. /wiki/ArXiv_(identifier)
Cushnie TP, Robertson PK, Officer S, Pollard PM, Prabhu R, McCullagh C, Robertson JM (2010). "Photobactericidal effects of TiO2 thin films at low temperature". Journal of Photochemistry and Photobiology A: Chemistry. 216 (2–3): 290–294. doi:10.1016/j.jphotochem.2010.06.027. https://zenodo.org/record/888756
Kostedt IV, William L.; Jack Drwiega; David W. Mazyck; Seung-Woo Lee; Wolfgang Sigmund; Chang-Yu Wu; Paul Chadik (2005). "Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants". Environmental Science & Technology. 39 (20). American Chemical Society: 8052–8056. Bibcode:2005EnST...39.8052K. doi:10.1021/es0508121. PMID 16295874. /wiki/Bibcode_(identifier)
"New visible light photocatalyst kills bacteria, even after light turned off". ScienceDaily. https://www.sciencedaily.com/releases/2010/01/100119121539.htm
Tan, S. S.; L. Zou; E. Hu (2006). "Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets". Catalysis Today. 115 (1–4): 269–273. doi:10.1016/j.cattod.2006.02.057. /wiki/Doi_(identifier)
Yao, Y. Yao; G. Li; S. Ciston; R. M. Lueptow; K. Gray (2008). "Photoreactive TiO2 /Carbon Nanotube Composites: Synthesis and Reactivity". Environmental Science & Technology. 42 (13). American Chemical Society: 4952–4957. Bibcode:2008EnST...42.4952Y. doi:10.1021/es800191n. PMID 18678032. /wiki/Bibcode_(identifier)
Linsebigler, A. L.; G. Lu; J.T. Yates (1995). "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results". Chemical Reviews. 95 (3): 735–758. doi:10.1021/cr00035a013. /wiki/Doi_(identifier)
Stephenson, Corey; Yoon, Tehshik; MacMillan, David W. C. (2018). Visible Light Photocatalysis in Organic Chemistry. doi:10.1002/9783527674145. ISBN 978-3-527-33560-2.[page needed] 978-3-527-33560-2
Barona-Castaño, Juan C.; Carmona-Vargas, Christian C.; Brocksom, Timothy J.; De Oliveira, Kleber T. (March 2016). "Porphyrins as Catalysts in Scalable Organic Reactions". Molecules. 21 (3): 310. doi:10.3390/molecules21030310. PMC 6273917. PMID 27005601. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273917
Sirbu, Dumitru; Woodford, Owen J.; Benniston, Andrew C.; Harriman, Anthony (2018-06-13). "Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY". Photochemical & Photobiological Sciences. 17 (6): 750–762. Bibcode:2018PhPhS..17..750S. doi:10.1039/C8PP00162F. PMID 29717745. https://doi.org/10.1039%2FC8PP00162F
Viswanathan, Balasubramanian (December 2017). "Photocatalytic Degradation of Dyes: An Overview". Current Catalysis, 2018, 7, 000-000: 3.
Nazim, Mohammed; Khan, Aftab Aslam Parwaz; Asiri, Abdullah M.; Kim, Jae Hyun (2021-02-02). "Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature". ACS Omega. 6 (4): 2601–2612. doi:10.1021/acsomega.0c04747. PMC 7859952. PMID 33553878. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859952
Bae, Tae-Hyun; Tak, Tae-Moon (March 2005). "Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration". Journal of Membrane Science. 249 (1–2): 1–8. doi:10.1016/j.memsci.2004.09.008. /wiki/Doi_(identifier)
Nascimbén Santos, Érika; László, Zsuzsanna; Hodúr, Cecilia; Arthanareeswaran, Gangasalam; Veréb, Gábor (September 2020). "Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: A review". Asia-Pacific Journal of Chemical Engineering. 15 (5). doi:10.1002/apj.2533. https://doi.org/10.1002%2Fapj.2533
Bortot Coelho, Fabrício Eduardo; Candelario, Victor M.; Araújo, Estêvão Magno Rodrigues; Miranda, Tânia Lúcia Santos; Magnacca, Giuliana (2020-04-18). "Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light". Nanomaterials. 10 (4): 779. doi:10.3390/nano10040779. PMC 7221772. PMID 32325680. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221772
[dead link]Mathiesen, D. (2012). "Final Report Summary - LIGHT2CAT (Visible LIGHT Active PhotoCATalytic Concretes for Air pollution Treatment)". European Commission. /wiki/Wikipedia:Link_rot
Light2CAT (2015). "Light2CAT Visible Light Active PhotoCATalytic Concretes for Air Pollution Treatment [YouTube Video]". YouTube. Archived from the original on 2021-12-13.{{cite web}}: CS1 maint: numeric names: authors list (link) https://www.youtube.com/watch?v=YCkxRVSi2cU
"ISO 22197-1:2007". ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/07/40761.html
"Unique Gas Analyser Helps to Characterize Photoactive Pigments | CoatingsPro Magazine". www.coatingspromag.com. http://www.coatingspromag.com/industry-news/2015/02/unique-gas-analyser-helps-to-characterize-photoactive-pigments
Nuño, Manuel; Ball, Richard J.; Bowen, Chris R. (August 2014). "Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry" (PDF). Journal of Mass Spectrometry. 49 (8): 716–726. Bibcode:2014JMSp...49..716N. doi:10.1002/jms.3396. PMID 25044899. http://opus.bath.ac.uk/40446/1/2014_Nuno_J_Mass_Spec.pdf