Graphene is extremely electrically conductive material. In turn, xGnP has a percolation threshold for conductivity of 1.9 wt% in thermoplastic matrix. At densities of 2–5 wt%, conductivity reaches sufficient levels to provide electromagnetic shielding. xGnP can also be combined with glass fibers or other matrix materials to provide sufficient conductivity for electrostatic painting or other applications requiring electrical conductivity.
xGnP significantly outperforms most other forms of carbon in terms of thermal conductivity when used at densities of 20 wt% in control resins. At these densities, xGnP also confers significant electrical conductivity as well as improved mechanical properties to most thermoplastic, thermoset, or elastomeric systems. At lesser densities, xGnP adds thermal stability to a variety of matrix materials.
As opposed to materials like carbon black, xGnP improves mechanical properties of most composites, particularly stiffness and tensile strength. Elastomeric compounds have been shown to experience increased life and reduced surface wear when reinforced with xGnP.
Because of the platelet shape, xGnP significantly improves the impermeability of composites when used at densities of ~3 wt% or greater. xGnP particles can be aligned using electric field, although alignment is not necessary for use in most extrusion systems. Because xGnP also imparts electrical conductivity at these densities, the resulting composites offer attractive cost savings for applications like fuel lines or fuel tank linings.
Sadri, Rad (15 October 2017). "Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer". Energy Conversion and Management. 150: 26–36. doi:10.1016/j.enconman.2017.07.036. https://www.sciencedirect.com/science/article/abs/pii/S0196890417306714 ↩
Chung, D. D. L. (2015). "A review of exfoliated graphite". Journal of Materials Science. 51 (1): 554–568. Bibcode:2016JMatS..51..554C. doi:10.1007/s10853-015-9284-6. ISSN 0022-2461. S2CID 28802916. /wiki/Bibcode_(identifier) ↩
Abdelkader, A. M.; Cooper, A. J.; Dryfe, R. A. W.; Kinloch, I. A. (2015). "How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite". Nanoscale. 7 (16): 6944–6956. Bibcode:2015Nanos...7.6944A. doi:10.1039/C4NR06942K. ISSN 2040-3364. PMID 25703415. /wiki/Bibcode_(identifier) ↩
Cataldi, Pietro; Bayer, Ilker; Athanassiou, Athanassia (23 August 2018). "Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications". Applied Sciences. 8 (9): 1438. doi:10.3390/app8091438. https://doi.org/10.3390%2Fapp8091438 ↩