The Pythagorean tiling is the unique tiling by squares of two different sizes that is both unilateral (no two squares have a common side) and equitransitive (each two squares of the same size can be mapped into each other by a symmetry of the tiling).
This tiling is called the Pythagorean tiling because it has been used as the basis of proofs of the Pythagorean theorem by the ninth-century Islamic mathematicians Al-Nayrizi and Thābit ibn Qurra, and by the 19th-century British amateur mathematician Henry Perigal. If the sides of the two squares forming the tiling are the numbers a and b, then the closest distance between corresponding points on congruent squares is c, where c is the length of the hypotenuse of a right triangle having sides a and b. For instance, in the illustration to the left, the two squares in the Pythagorean tiling have side lengths 5 and 12 units long, and the side length of the tiles in the overlaying square tiling is 13, based on the Pythagorean triple (5,12,13).
In the "Klotz construction" for aperiodic sequences (Klotz is a German word for a block), one forms a Pythagorean tiling with two squares whose sizes are chosen to make the ratio between the two side lengths be an irrational number x. Then, one chooses a line parallel to the sides of the squares, and forms a sequence of binary values from the sizes of the squares crossed by the line: a 0 corresponds to a crossing of a large square and a 1 corresponds to a crossing of a small square. In this sequence, the relative proportion of 0s and 1s will be in the ratio x:1. This proportion cannot be achieved by a periodic sequence of 0s and 1s, because it is irrational, so the sequence is aperiodic.
An early structural application of the Pythagorean tiling appears in the works of Leonardo da Vinci, who considered it among several other potential patterns for floor joists. This tiling has also long been used decoratively, for floor tiles or other similar patterns, as can be seen for instance in Jacob Ochtervelt's painting Street Musicians at the Door (1665). It has been suggested that seeing a similar tiling in the palace of Polycrates may have provided Pythagoras with the original inspiration for his theorem.
Wells, David (1991), "two squares tessellation", The Penguin Dictionary of Curious and Interesting Geometry, New York: Penguin Books, pp. 260–261, ISBN 0-14-011813-6. 0-14-011813-6
Nelsen, Roger B. (November 2003), "Paintings, plane tilings, and proofs" (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741, S2CID 126000048. Reprinted in Haunsperger, Deanna; Kennedy, Stephen (2007), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3. See also Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, vol. 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1. 978-0-88385-555-3978-0-88385-348-1
"How to Install Hopscotch Pattern Tiles", Home Guides, San Francisco Chronicle, retrieved 2016-12-12. http://homeguides.sfgate.com/install-hopscotch-pattern-tiles-25897.html
Editors of Fine Homebuilding (2013), Bathroom Remodeling, Taunton Press, p. 45, ISBN 978-1-62710-078-6. A schematic diagram illustrating this floor tile pattern appears earlier, on p. 42. 978-1-62710-078-6
Radin, C. (1994), "The Pinwheel Tilings of the Plane", Annals of Mathematics, 139 (3): 661–702, doi:10.2307/2118575, JSTOR 2118575 /wiki/Charles_Radin
Martini, Horst; Makai, Endre; Soltan, Valeriu (1998), "Unilateral tilings of the plane with squares of three sizes", Beiträge zur Algebra und Geometrie, 39 (2): 481–495, MR 1642720. http://www.emis.de/journals/BAG/vol.39/no.2/b39h2mar.ps.gz
Grünbaum, Branko; Shephard, G. C. (1987), Tilings and Patterns, W. H. Freeman, p. 171. /wiki/Branko_Gr%C3%BCnbaum
Grünbaum & Shephard (1987), p. 42. - Grünbaum, Branko; Shephard, G. C. (1987), Tilings and Patterns, W. H. Freeman, p. 171
Grünbaum & Shephard (1987), pp. 73–74. - Grünbaum, Branko; Shephard, G. C. (1987), Tilings and Patterns, W. H. Freeman, p. 171
Nelsen, Roger B. (November 2003), "Paintings, plane tilings, and proofs" (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741, S2CID 126000048. Reprinted in Haunsperger, Deanna; Kennedy, Stephen (2007), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3. See also Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, vol. 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1. 978-0-88385-555-3978-0-88385-348-1
Frederickson, Greg N. (1997), Dissections: Plane & Fancy, Cambridge University Press, pp. 30–31.
Aguiló, Francesc; Fiol, Miquel Angel; Fiol, Maria Lluïsa (2000), "Periodic tilings as a dissection method", American Mathematical Monthly, 107 (4): 341–352, doi:10.2307/2589179, JSTOR 2589179, MR 1763064. /wiki/Doi_(identifier)
Grünbaum & Shephard (1987), p. 94. - Grünbaum, Branko; Shephard, G. C. (1987), Tilings and Patterns, W. H. Freeman, p. 171
Ostermann, Alexander; Wanner, Gerhard (2012), "Thales and Pythagoras", Geometry by Its History, Undergraduate Texts in Mathematics, Springer, pp. 3–26, doi:10.1007/978-3-642-29163-0_1. See in particular pp. 15–16. /wiki/Doi_(identifier)
Frederickson, Greg N. (1997), Dissections: Plane & Fancy, Cambridge University Press, pp. 30–31.
Steurer, Walter; Deloudi, Sofia (2009), "3.5.3.7 The Klotz construction", Crystallography of Quasicrystals: Concepts, Methods and Structures, Springer Series in Materials Science, vol. 126, Springer, pp. 91–92, doi:10.1007/978-3-642-01899-2, ISBN 978-3-642-01898-5. 978-3-642-01898-5
Steurer, Walter; Deloudi, Sofia (2009), "3.5.3.7 The Klotz construction", Crystallography of Quasicrystals: Concepts, Methods and Structures, Springer Series in Materials Science, vol. 126, Springer, pp. 91–92, doi:10.1007/978-3-642-01899-2, ISBN 978-3-642-01898-5. 978-3-642-01898-5
Steurer, Walter; Deloudi, Sofia (2009), "3.5.3.7 The Klotz construction", Crystallography of Quasicrystals: Concepts, Methods and Structures, Springer Series in Materials Science, vol. 126, Springer, pp. 91–92, doi:10.1007/978-3-642-01899-2, ISBN 978-3-642-01898-5. 978-3-642-01898-5
Sánchez, José; Escrig, Félix (December 2011), "Frames designed by Leonardo with short pieces: An analytical approach", International Journal of Space Structures, 26 (4): 289–302, doi:10.1260/0266-3511.26.4.289, S2CID 108639647. /wiki/Doi_(identifier)
Nelsen, Roger B. (November 2003), "Paintings, plane tilings, and proofs" (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741, S2CID 126000048. Reprinted in Haunsperger, Deanna; Kennedy, Stephen (2007), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3. See also Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, vol. 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1. 978-0-88385-555-3978-0-88385-348-1
Ostermann, Alexander; Wanner, Gerhard (2012), "Thales and Pythagoras", Geometry by Its History, Undergraduate Texts in Mathematics, Springer, pp. 3–26, doi:10.1007/978-3-642-29163-0_1. See in particular pp. 15–16. /wiki/Doi_(identifier)
The truth of his conjecture for two-dimensional tilings was known already to Keller, but it was since proven false for dimensions eight and above. For a recent survey on results related to this conjecture, see Zong, Chuanming (2005), "What is known about unit cubes", Bulletin of the American Mathematical Society, New Series, 42 (2): 181–211, doi:10.1090/S0273-0979-05-01050-5, MR 2133310. /wiki/Doi_(identifier)
Martini, Horst; Makai, Endre; Soltan, Valeriu (1998), "Unilateral tilings of the plane with squares of three sizes", Beiträge zur Algebra und Geometrie, 39 (2): 481–495, MR 1642720. http://www.emis.de/journals/BAG/vol.39/no.2/b39h2mar.ps.gz
Bölcskei, Attila (2001), "Filling space with cubes of two sizes", Publicationes Mathematicae Debrecen, 59 (3–4): 317–326, doi:10.5486/PMD.2001.2480, MR 1874434, S2CID 226270246. See also Dawson (1984), which includes an illustration of the three-dimensional tiling, credited to "Rogers" but cited to a 1960 paper by Richard K. Guy: Dawson, R. J. M. (1984), "On filling space with different integer cubes", Journal of Combinatorial Theory, Series A, 36 (2): 221–229, doi:10.1016/0097-3165(84)90007-4, MR 0734979. /wiki/Doi_(identifier)
Burns, Aidan (1994), "78.13 Fractal tilings", Mathematical Gazette, 78 (482): 193–196, doi:10.2307/3618577, JSTOR 3618577, S2CID 126185324. Rigby, John (1995), "79.51 Tiling the plane with similar polygons of two sizes", Mathematical Gazette, 79 (486): 560–561, doi:10.2307/3618091, JSTOR 3618091, S2CID 125458495. /wiki/Doi_(identifier)
Figure 3 of Danzer, Ludwig; Grünbaum, Branko; Shephard, G. C. (1982), "Unsolved Problems: Can All Tiles of a Tiling Have Five-Fold Symmetry?", The American Mathematical Monthly, 89 (8): 568–570+583–585, doi:10.2307/2320829, JSTOR 2320829, MR 1540019. /wiki/Branko_Gr%C3%BCnbaum