In humans, the gut microbiota has the highest numbers and species of bacteria compared to other areas of the body. The approximate number of bacteria composing the gut microbiota is about 1013–1014 (10,000 to 100,000 billion). In humans, the gut flora is established at birth and gradually transitions towards a state resembling that of adults by the age of two, coinciding with the development and maturation of the intestinal epithelium and intestinal mucosal barrier. This barrier is essential for supporting a symbiotic relationship with the gut flora while providing protection against pathogenic organisms.
The composition of human gut microbiota changes over time, when the diet changes, and as overall health changes. A systematic review from 2016 examined the preclinical and small human trials that have been conducted with certain commercially available strains of probiotic bacteria and identified those that had the most potential to be useful for certain central nervous system disorders. It should also be highlighted that the Mediterranean diet, rich in vegetables and fibers, stimulates the activity and growth of beneficial bacteria for the brain.
The microbial composition of the gut microbiota varies across the digestive tract. In the stomach and small intestine, relatively few species of bacteria are generally present. Fungi, protists, archaea, and viruses are also present in the gut flora, but less is known about their activities.
Many species in the gut have not been studied outside of their hosts because they cannot be cultured. While there are a small number of core microbial species shared by most individuals, populations of microbes can vary widely. Within an individual, their microbial populations stay fairly constant over time, with some alterations occurring due to changes in lifestyle, diet and age. The Human Microbiome Project has set out to better describe the microbiota of the human gut and other body locations.
The small intestine contains a trace amount of microorganisms due to the proximity and influence of the stomach. Gram-positive cocci and rod-shaped bacteria are the predominant microorganisms found in the small intestine. However, in the distal portion of the small intestine alkaline conditions support gram-negative bacteria of the Enterobacteriaceae. The bacterial flora of the small intestine aid in a wide range of intestinal functions. The bacterial flora provide regulatory signals that enable the development and utility of the gut. Overgrowth of bacteria in the small intestine can lead to intestinal failure. In addition the large intestine contains the largest bacterial ecosystem in the human body. About 99% of the large intestine and feces flora are made up of obligate anaerobes such as Bacteroides and Bifidobacterium. Factors that disrupt the microorganism population of the large intestine include antibiotics, stress, and parasites.
Due to the prevalence of fungi in the natural environment, determining which genera and species are permanent members of the gut mycobiome is difficult. Research is underway as to whether Penicillium is a permanent or transient member of the gut flora, obtained from dietary sources such as cheese, though several species in the genus are known to survive at temperatures around 37 °C, about the same as the core body temperature. Saccharomyces cerevisiae, brewer's yeast, is known to reach the intestines after being ingested and can be responsible for the condition auto-brewery syndrome in cases where it is overabundant, while Candida albicans is likely a permanent member, and is believed to be acquired at birth through vertical transmission.[medical citation needed]
There are common patterns of microbiome composition evolution during life. In general, the diversity of microbiota composition of fecal samples is significantly higher in adults than in children, although interpersonal differences are higher in children than in adults. Much of the maturation of microbiota into an adult-like configuration happens during the first three years of life.
As the microbiome composition changes, so does the composition of bacterial proteins produced in the gut. In adult microbiomes, a high prevalence of enzymes involved in fermentation, methanogenesis and the metabolism of arginine, glutamate, aspartate and lysine have been found. In contrast, in infant microbiomes the dominant enzymes are involved in cysteine metabolism and fermentation pathways.
Gut microbiome composition depends on the geographic origin of populations. Variations in a trade-off of Prevotella, the representation of the urease gene, and the representation of genes encoding glutamate synthase/degradation or other enzymes involved in amino acids degradation or vitamin biosynthesis show significant differences between populations from the US, Malawi, or Amerindian origin.
The US population has a high representation of enzymes encoding the degradation of glutamine and enzymes involved in vitamin and lipoic acid biosynthesis; whereas Malawi and Amerindian populations have a high representation of enzymes encoding glutamate synthase and they also have an overrepresentation of α-amylase in their microbiomes. As the US population has a diet richer in fats than Amerindian or Malawian populations which have a corn-rich diet, the diet is probably the main determinant of the gut bacterial composition.
Further studies have indicated a large difference in the composition of microbiota between European and rural African children. The fecal bacteria of children from Florence were compared to that of children from the small rural village of Boulpon in Burkina Faso. The diet of a typical child living in this village is largely lacking in fats and animal proteins and rich in polysaccharides and plant proteins. The fecal bacteria of European children were dominated by Firmicutes and showed a marked reduction in biodiversity, while the fecal bacteria of the Boulpon children was dominated by Bacteroidetes. The increased biodiversity and different composition of the gut microbiome in African populations may aid in the digestion of normally indigestible plant polysaccharides and also may result in a reduced incidence of non-infectious colonic diseases.
On a smaller scale, it has been shown that sharing numerous common environmental exposures in a family is a strong determinant of individual microbiome composition. This effect has no genetic influence and it is consistently observed in culturally different populations.
Researchers with the American Gut Project and Human Microbiome Project found that twelve microbe families varied in abundance based on the race or ethnicity of the individual. The strength of these associations is limited by the small sample size: the American Gut Project collected data from 1,375 individuals, 90% of whom were white. The Healthy Life in an Urban Setting (HELIUS) study in Amsterdam found that those of Dutch ancestry had the highest level of gut microbiota diversity, while those of South Asian and Surinamese descent had the lowest diversity. The study results suggested that individuals of the same race or ethnicity have more similar microbiomes than individuals of different racial backgrounds.
As of 2020, at least two studies have demonstrated a link between an individual's socioeconomic status (SES) and their gut microbiota. A study in Chicago found that individuals in higher SES neighborhoods had greater microbiota diversity. People from higher SES neighborhoods also had more abundant Bacteroides bacteria. Similarly, a study of twins in the United Kingdom found that higher SES was also linked with a greater gut diversity.
As of 2023, a study suggests that antibiotics, especially those used in the treatment of broad-spectrum bacterial infections, have negative effects on the gut microbiota. The study also states that there are many experts on intestinal health concerned that antibody usage has reduced the diversity of the gut microbiota, many of the strains are lost, and if there is a re-emergence of the bacteria, is gradual and long-term.
When the study of gut flora began in 1995, it was thought to have three key roles: direct defense against pathogens, fortification of host defense by its role in developing and maintaining the intestinal epithelium and inducing antibody production there, and metabolizing otherwise indigestible compounds in food. Subsequent work discovered its role in training the developing immune system, and yet further work focused on its role in the gut–brain axis.
The gut microbiota not only influences intestinal health but also plays a role in systemic immune regulation, including interactions with the pulmonary immune environment through what is known as the 'gut–lung axis'.
The gut flora community plays a direct role in defending against pathogens by fully colonising the space, making use of all available nutrients, and by secreting compounds known as cytokines that kill or inhibit unwelcome organisms that would compete for nutrients with it. Different strains of gut bacteria cause the production of different cytokines. Cytokines are chemical compounds produced by our immune system for initiating the inflammatory response against infections. Disruption of the gut flora allows competing organisms like Clostridioides difficile to become established that otherwise are kept in abeyance.
Gut flora in infants becomes similar to an adult within one to two years of birth. As the gut flora establishes, the lining of the intestines – the intestinal epithelium and the intestinal mucosal barrier that it secretes – develop a symbiosis with microorganisms. Specifically, goblet cells that produce the mucosa proliferate, and the mucosa layer thickens, providing an outside mucosal layer in which favorable microorganisms can anchor and feed, and an inner layer that these organisms cannot penetrate. Additionally, the development of gut-associated lymphoid tissue (GALT), which forms part of the intestinal epithelium and which detects and reacts to pathogens, develops during the time that the gut flora becomes established. The GALT that develops is tolerant to gut flora species, but not to other microorganisms. GALT also normally becomes tolerant to food the infant consumes, and the gut flora metabolites (molecules formed from metabolism) produced from food.
A 2022 review indicated that various mechanisms are under preliminary research to assess how gut microbes may modulate vaccine immunogenicity, including effects on antigen presentation and cytokine profiles.
Without gut flora, the human body would be unable to utilize some of the undigested carbohydrates it consumes, because some types of gut flora have enzymes that human cells lack for breaking down certain polysaccharides. Rodents raised in a sterile environment and lacking in gut flora need to eat 30% more calories just to remain the same weight as their normal counterparts. Carbohydrates that humans cannot digest without bacterial help include certain starches, fiber, oligosaccharides, and sugars that the body failed to digest and absorb like lactose in the case of lactose intolerance and sugar alcohols, mucus produced by the gut, and proteins.
Gut microbiota also serve as a source of vitamins K and B12, which are not produced by the body or produced in little amount.
The gut microbiota is an enriched community that contains diverse genes with huge biochemical capabilities to modify drugs, especially those taken by mouth. Gut microbiota can affect drug metabolism via direct and indirect mechanisms. The direct mechanism is mediated by the microbial enzymes that can modify the chemical structure of the administered drugs. Conversely, the indirect pathway is mediated by the microbial metabolites which affect the expression of host metabolizing enzymes such as cytochrome P450. The effects of the gut microbiota on the pharmacokinetics and bioavailability of the drug have been investigated a few decades ago. These effects can be varied; it could activate the inactive drugs such as lovastatin, inactivate the active drug such as digoxin or induce drug toxicity as in irinotecan. Since then, the impacts of the gut microbiota on the pharmacokinetics of many drugs were heavily studied.
The human gut microbiota plays a crucial role in modulating the effect of the administered drugs on the human. Directly, gut microbiota can synthesize and release a series of enzymes with the capability to metabolize drugs such as microbial biotransformation of L-dopa by decarboxylase and dehydroxylase enzymes. On the contrary, gut microbiota may also alter the metabolism of the drugs by modulating the host drug metabolism. This mechanism can be mediated by microbial metabolites or by modifying host metabolites which in turn change the expression of host metabolizing enzymes.
A large number of studies have demonstrated the metabolism of over 50 drugs by the gut microbiota. For example, lovastatin (a cholesterol-lowering agent) which is a lactone prodrug is partially activated by the human gut microbiota forming active acid hydroxylated metabolites. Conversely, digoxin (a drug used to treat Congestive Heart Failure) is inactivated by a member of the gut microbiota (i.e. Eggerthella lanta). Eggerthella lanta has a cytochrome-encoding operon up-regulated by digoxin and associated with digoxin-inactivation. Gut microbiota can also modulate the efficacy and toxicity of chemotherapeutic agents such as irinotecan. This effect is derived from the microbiome-encoded β-glucuronidase enzymes which recover the active form of the irinotecan causing gastrointestinal toxicity.
This microbial community in the gut has a huge biochemical capability to produce distinct secondary metabolites that are sometimes produced from the metabolic conversion of dietary foods such as fibers, endogenous biological compounds such as indole or bile acids. Microbial metabolites especially short chain fatty acids (SCFAs) and secondary bile acids (BAs) play important roles for the human in health and disease states.
One of the most important bacterial metabolites produced by the gut microbiota is secondary bile acids (BAs). These metabolites are produced by the bacterial biotransformation of the primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) into secondary bile acids (BAs) lithocholic acid (LCA) and deoxy cholic acid (DCA) respectively. Primary bile acids which are synthesized by hepatocytes and stored in the gall bladder possess hydrophobic characters. These metabolites are subsequently metabolized by the gut microbiota into secondary metabolites with increased hydrophobicity. Bile salt hydrolases (BSH) which are conserved across gut microbiota phyla such as Bacteroides, Firmicutes, and Actinobacteria responsible for the first step of secondary bile acids metabolism. Secondary bile acids (BAs) such as DCA and LCA have been demonstrated to inhibit both Clostridioides difficile germination and outgrowth.
The gut microbiota is important for maintaining homeostasis in the intestine. Development of intestinal cancer is associated with an imbalance in the natural microflora (dysbiosis). The secondary bile acid deoxycholic acid is associated with alterations of the microbial community that lead to increased intestinal carcinogenesis. Increased exposure of the colon to secondary bile acids resulting from dysbiosis can cause DNA damage, and such damage can produce carcinogenic mutations in cells of the colon. The high density of bacteria in the colon (about 1012 per ml.) that are subject to dysbiosis compared to the relatively low density in the small intestine (about 102 per ml.) may account for the greater than 10-fold higher incidence of cancer in the colon compared to the small intestine.
The gut microbiota contributes to digestion and immune modulation, as it plays a role in the gut-brain axis, where microbial metabolites such as short-chain fatty acids and neurotransmitters influence brain function and behavior. The gut–brain axis is the biochemical signaling that takes place between the gastrointestinal tract and the central nervous system. That term has been expanded to include the role of the gut flora in the interplay; the term "microbiome––brain axis" is sometimes used to describe paradigms explicitly including the gut flora. Broadly defined, the gut-brain axis includes the central nervous system, neuroendocrine and neuroimmune systems including the hypothalamic–pituitary–adrenal axis (HPA axis), sympathetic and parasympathetic arms of the autonomic nervous system including the enteric nervous system, the vagus nerve, and the gut microbiota.
Changing the numbers and species of gut microbiota can reduce the body's ability to ferment carbohydrates and metabolize bile acids and may cause diarrhea. Carbohydrates that are not broken down may absorb too much water and cause runny stools, or lack of SCFAs produced by gut microbiota could cause diarrhea.
A reduction in levels of native bacterial species also disrupts their ability to inhibit the growth of harmful species such as C. difficile and Salmonella Kedougou, and these species can get out of hand, though their overgrowth may be incidental and not be the true cause of diarrhea. Emerging treatment protocols for C. difficile infections involve fecal microbiota transplantation of donor feces (see Fecal transplant). Initial reports of treatment describe success rates of 90%, with few side effects. Efficacy is speculated to result from restoring bacterial balances of bacteroides and firmicutes classes of bacteria.
The composition of the gut microbiome also changes in severe illnesses, due not only to antibiotic use but also to such factors as ischemia of the gut, failure to eat, and immune compromise. Negative effects from this have led to interest in selective digestive tract decontamination, a treatment to kill only pathogenic bacteria and allow the re-establishment of healthy ones.
Tests for whether non-antibiotic drugs may impact human gut-associated bacteria were performed by in vitro analysis on more than 1000 marketed drugs against 40 gut bacterial strains, demonstrating that 24% of the drugs inhibited the growth of at least one of the bacterial strains.
Bacteria in the digestive tract can contribute to and be affected by disease in various ways. The presence or overabundance of some kinds of bacteria may contribute to inflammatory disorders such as inflammatory bowel disease. Additionally, metabolites from certain members of the gut flora may influence host signalling pathways, contributing to disorders such as obesity and colon cancer. Some gut bacteria may also cause infections and sepsis, for example when they are allowed to pass from the gut into the rest of the body.
The diversity of gut flora appears to be significantly diminished in people with inflammatory bowel diseases compared to healthy people; additionally, in people with ulcerative colitis, Proteobacteria and Actinobacteria appear to dominate; in people with Crohn's, Enterococcus faecium and several Proteobacteria appear to be over-represented.
There is reasonable evidence that correcting gut flora imbalances by taking probiotics with Lactobacilli and Bifidobacteria can reduce visceral pain and gut inflammation in IBD.
With asthma, two hypotheses have been posed to explain its rising prevalence in the developed world. The hygiene hypothesis posits that children in the developed world are not exposed to enough microbes and thus may contain lower prevalence of specific bacterial taxa that play protective roles. The second hypothesis focuses on the Western pattern diet, which lacks whole grains and fiber and has an overabundance of simple sugars. Both hypotheses converge on the role of short-chain fatty acids (SCFAs) in immunomodulation. These bacterial fermentation metabolites are involved in immune signalling that prevents the triggering of asthma and lower SCFA levels are associated with the disease. Lacking protective genera such as Lachnospira, Veillonella, Rothia and Faecalibacterium has been linked to reduced SCFA levels. Further, SCFAs are the product of bacterial fermentation of fiber, which is low in the Western pattern diet. SCFAs offer a link between gut flora and immune disorders, and as of 2016, this was an active area of research. Similar hypotheses have also been posited for the rise of food and other allergies.
Just as gut flora can function in a feedback loop that can drive the development of obesity, there is evidence that restricting intake of calories (i.e., dieting) can drive changes to the composition of the gut flora.
The composition of the human gut microbiome is similar to that of the other great apes. However, humans' gut biota has decreased in diversity and changed in composition since our evolutionary split from Pan. Humans display increases in Bacteroidetes, a bacterial phylum associated with diets high in animal protein and fat, and decreases in Methanobrevibacter and Fibrobacter, groups that ferment complex plant polysaccharides. These changes are the result of the combined dietary, genetic, and cultural changes humans have undergone since evolutionary divergence from Pan.
In addition to humans and vertebrates, some insects also have complex and diverse gut microbiota that play key nutritional roles. Microbial communities associated with termites can constitute a majority of the weight of the individuals and perform important roles in the digestion of lignocellulose and nitrogen fixation. It is known that the disruption of gut microbiota of termites using agents like antibiotics or boric acid (a common agent used in preventative treatment) causes severe damage to digestive function and leads to the rise of opportunistic pathogens. These communities are host-specific, and closely related insect species share comparable similarities in gut microbiota composition. In cockroaches, gut microbiota have been shown to assemble in a deterministic fashion, irrespective of the inoculum; the reason for this host-specific assembly remains unclear. Bacterial communities associated with insects like termites and cockroaches are determined by a combination of forces, primarily diet, but there is some indication that host phylogeny may also be playing a role in the selection of lineages.
For more than 51 years it has been known that the administration of low doses of antibacterial agents promotes the growth of farm animals to increase weight gain.
Moszak M, Szulińska M, Bogdański P (15 April 2020). "You Are What You Eat – The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review". Nutrients. 12 (4): 1096. doi:10.3390/nu12041096. PMC 7230850. PMID 32326604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230850
Engel P, Moran N (2013). "The gut microbiota of insects–diversity in structure and function". FEMS Microbiology Reviews. 37 (5): 699–735. doi:10.1111/1574-6976.12025. PMID 23692388. https://doi.org/10.1111%2F1574-6976.12025
Segata N, Boernigen D, Tickle TL, et al. (14 May 2013). "Computational meta'omics for microbial community studies". Molecular Systems Biology. 9: 666. doi:10.1038/msb.2013.22. PMC 4039370. PMID 23670539. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039370
Saxena R, Sharma V (2016). "A Metagenomic Insight Into the Human Microbiome: Its Implications in Health and Disease". In Kumar D, S. Antonarakis (eds.). Medical and Health Genomics. Elsevier Science. p. 117. doi:10.1016/B978-0-12-420196-5.00009-5. ISBN 978-0-12-799922-7. 978-0-12-799922-7
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Saxena R, Sharma V (2016). "A Metagenomic Insight Into the Human Microbiome: Its Implications in Health and Disease". In Kumar D, S. Antonarakis (eds.). Medical and Health Genomics. Elsevier Science. p. 117. doi:10.1016/B978-0-12-420196-5.00009-5. ISBN 978-0-12-799922-7. 978-0-12-799922-7
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Stephen AM, Cummings JH (1980). "The Microbial Contribution to Human Faecal Mass". Journal of Medical Microbiology. 13 (1): 45–56. doi:10.1099/00222615-13-1-45. PMID 7359576. https://doi.org/10.1099%2F00222615-13-1-45
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Quigley EM (2013). "Gut bacteria in health and disease". Gastroenterology & Hepatology. 9 (9): 560–569. PMC 3983973. PMID 24729765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983973
Turnbaugh PJ, Ley RE, Hamady M, et al. (October 2007). "The Human Microbiome Project". Nature. 449 (7164): 804–810. Bibcode:2007Natur.449..804T. doi:10.1038/nature06244. PMC 3709439. PMID 17943116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709439
Ma G, Shi Y, Meng L, et al. (2023). "Factors affecting the early establishment of neonatal intestinal flora and its intervention measures". Frontiers in Cellular and Infection Microbiology. 13. doi:10.3389/fcimb.2023.1295111. PMC 10722192. PMID 38106467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722192
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Faderl M, Noti M, Corazza N, et al. (2015). "Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis". IUBMB Life. 67 (4): 275–285. doi:10.1002/iub.1374. PMID 25914114. https://doi.org/10.1002%2Fiub.1374
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Quigley EM (2013). "Gut bacteria in health and disease". Gastroenterology & Hepatology. 9 (9): 560–569. PMC 3983973. PMID 24729765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983973
Clarke G, Stilling RM, Kennedy PJ, et al. (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–1238. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414803
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Clarke G, Stilling RM, Kennedy PJ, et al. (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–1238. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414803
Clarke G, Stilling RM, Kennedy PJ, et al. (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–1238. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414803
Quigley EM (2013). "Gut bacteria in health and disease". Gastroenterology & Hepatology. 9 (9): 560–569. PMC 3983973. PMID 24729765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983973
Shen S, Wong CH (2016). "Bugging inflammation: Role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855262
Quigley EM (2013). "Gut bacteria in health and disease". Gastroenterology & Hepatology. 9 (9): 560–569. PMC 3983973. PMID 24729765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983973
Shen S, Wong CH (2016). "Bugging inflammation: Role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855262
Wang H, Lee IS, Braun C, et al. (2016). "Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review". Journal of Neurogastroenterology and Motility. 22 (4): 589–605. doi:10.5056/jnm16018. PMC 5056568. PMID 27413138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056568
Salvadori M (20 March 2024). "Update on the gut microbiome in health and diseases". World J Methodol. 14 (1). doi:10.5662/wjm.v14.i1.89196. PMC 10989414. PMID 38577200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989414
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Sears CL (2005). "A dynamic partnership: Celebrating our gut flora". Anaerobe. 11 (5): 247–251. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579. /wiki/Doi_(identifier)
Lozupone CA, Stombaugh JI, Gordon JI, et al. (2012). "Diversity, stability and resilience of the human gut microbiota". Nature. 489 (7415): 220–230. Bibcode:2012Natur.489..220L. doi:10.1038/nature11550. PMC 3577372. PMID 22972295. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577372
Sears CL (2005). "A dynamic partnership: Celebrating our gut flora". Anaerobe. 11 (5): 247–251. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Shanahan F (2002). "The host–microbe interface within the gut". Best Practice & Research Clinical Gastroenterology. 16 (6): 915–931. doi:10.1053/bega.2002.0342. PMID 12473298. /wiki/Doi_(identifier)
Tap J, Mondot S, Levenez F, et al. (2009). "Towards the human intestinal microbiota phylogenetic core". Environmental Microbiology. 11 (10): 2574–2584. Bibcode:2009EnvMi..11.2574T. doi:10.1111/j.1462-2920.2009.01982.x. PMID 19601958. https://doi.org/10.1111%2Fj.1462-2920.2009.01982.x
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
O'Hara AM, Shanahan F (2006). "The gut flora as a forgotten organ". EMBO Reports. 7 (7): 688–693. doi:10.1038/sj.embor.7400731. PMC 1500832. PMID 16819463. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1500832
Khanna S, Tosh PK (2014). "A Clinician's Primer on the Role of the Microbiome in Human Health and Disease". Mayo Clinic Proceedings. 89 (1): 107–114. doi:10.1016/j.mayocp.2013.10.011. PMID 24388028. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Sears CL (2005). "A dynamic partnership: Celebrating our gut flora". Anaerobe. 11 (5): 247–251. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579. /wiki/Doi_(identifier)
Cui L, Morris A, Ghedin E (2013). "The human mycobiome in health and disease". Genome Medicine. 5 (7): 63. doi:10.1186/gm467. PMC 3978422. PMID 23899327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978422
Erdogan A, Rao SS (2015). "Small Intestinal Fungal Overgrowth". Current Gastroenterology Reports. 17 (4): 16. doi:10.1007/s11894-015-0436-2. PMID 25786900. /wiki/Doi_(identifier)
Cui L, Morris A, Ghedin E (2013). "The human mycobiome in health and disease". Genome Medicine. 5 (7): 63. doi:10.1186/gm467. PMC 3978422. PMID 23899327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978422
Bello MG, Knight R, Gilbert JA, et al. (4 October 2018). "Preserving microbial diversity". Science. 362 (6410): 33–34. Bibcode:2018Sci...362...33B. doi:10.1126/science.aau8816. PMID 30287652. /wiki/Bibcode_(identifier)
Arumugam M, Raes J, Pelletier E, et al. (2011). "Enterotypes of the human gut microbiome". Nature. 473 (7346): 174–180. Bibcode:2011Natur.473..174.. doi:10.1038/nature09944. PMC 3728647. PMID 21508958. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728647
Wu GD, Chen J, Hoffmann C, et al. (2011). "Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes". Science. 334 (6052): 105–108. Bibcode:2011Sci...334..105W. doi:10.1126/science.1208344. PMC 3368382. PMID 21885731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368382
Arumugam M, Raes J, Pelletier E, et al. (2011). "Enterotypes of the human gut microbiome". Nature. 473 (7346): 174–180. Bibcode:2011Natur.473..174.. doi:10.1038/nature09944. PMC 3728647. PMID 21508958. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728647
Zimmer C (20 April 2011). "Bacteria Divide People Into 3 Types, Scientists Say". The New York Times. Retrieved 21 April 2011. a group of scientists now report just three distinct ecosystems in the guts of people they have studied. https://www.nytimes.com/2011/04/21/science/21gut.html
Knights D, Ward T, McKinlay C, et al. (8 October 2014). "Rethinking "Enterotypes"". Cell Host & Microbe. 16 (4): 433–437. doi:10.1016/j.chom.2014.09.013. PMC 5558460. PMID 25299329. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558460
Nardone G, Compare D (June 2015). "The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases?". United European Gastroenterology Journal. 3 (3): 255–60. doi:10.1177/2050640614566846. PMC 4480535. PMID 26137299. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480535
Nardone G, Compare D (June 2015). "The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases?". United European Gastroenterology Journal. 3 (3): 255–60. doi:10.1177/2050640614566846. PMC 4480535. PMID 26137299. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480535
Yao X, Smolka AJ (June 2019). "Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease". Gastroenterology. 156 (8): 2158–2173. doi:10.1053/j.gastro.2019.02.036. PMC 6715393. PMID 30831083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715393
Todar K (2012). "The Normal Bacterial Flora of Humans". Todar's Online Textbook of Bacteriology. Retrieved 25 June 2016. http://www.textbookofbacteriology.net/normalflora_3.html
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Quigley EM, Quera R (2006). "Small Intestinal Bacterial Overgrowth: Roles of Antibiotics, Prebiotics, and Probiotics". Gastroenterology. 130 (2): S78–90. doi:10.1053/j.gastro.2005.11.046. PMID 16473077. https://doi.org/10.1053%2Fj.gastro.2005.11.046
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Adams MR, Moss MO (2007). Food Microbiology. doi:10.1039/9781847557940. ISBN 978-0-85404-284-5.[page needed] 978-0-85404-284-5
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
"The normal gut flora" (PDF) (slideshow). 2004. Archived from the original (PDF) on 26 May 2004. Retrieved 2 January 2023 – via University of Glasgow. https://web.archive.org/web/20040526195616/http://www.gla.ac.uk/departments/humannutrition/students/resources/meden/Infection.pdf
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Braune A, Blaut M (2016). "Bacterial species involved in the conversion of dietary flavonoids in the human gut". Gut Microbes. 7 (3): 216–234. doi:10.1080/19490976.2016.1158395. PMC 4939924. PMID 26963713. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939924
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Sears CL (2005). "A dynamic partnership: Celebrating our gut flora". Anaerobe. 11 (5): 247–251. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579. /wiki/Doi_(identifier)
Steinhoff U (2005). "Who controls the crowd? New findings and old questions about the intestinal microflora". Immunology Letters. 99 (1): 12–16. doi:10.1016/j.imlet.2004.12.013. PMID 15894105. /wiki/Doi_(identifier)
Gibson GR (2004). "Fibre and effects on probiotics (the prebiotic concept)". Clinical Nutrition Supplements. 1 (2): 25–31. doi:10.1016/j.clnu.2004.09.005. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Miquel S, Martín R, Rossi O, et al. (2013). "Faecalibacterium prausnitzii and human intestinal health". Current Opinion in Microbiology. 16 (3): 255–261. doi:10.1016/j.mib.2013.06.003. PMID 23831042. /wiki/Doi_(identifier)
Sears CL (2005). "A dynamic partnership: Celebrating our gut flora". Anaerobe. 11 (5): 247–251. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579. /wiki/Doi_(identifier)
Steinhoff U (2005). "Who controls the crowd? New findings and old questions about the intestinal microflora". Immunology Letters. 99 (1): 12–16. doi:10.1016/j.imlet.2004.12.013. PMID 15894105. /wiki/Doi_(identifier)
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Ley RE (2010). "Obesity and the human microbiome". Current Opinion in Gastroenterology. 26 (1): 5–11. doi:10.1097/MOG.0b013e328333d751. PMID 19901833. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
"The normal gut flora" (PDF) (slideshow). 2004. Archived from the original (PDF) on 26 May 2004. Retrieved 2 January 2023 – via University of Glasgow. https://web.archive.org/web/20040526195616/http://www.gla.ac.uk/departments/humannutrition/students/resources/meden/Infection.pdf
Nash AK, Auchtung TA, Wong MC, et al. (2017). "The gut mycobiome of the Human Microbiome Project healthy cohort". Microbiome. 5 (1): 153. doi:10.1186/s40168-017-0373-4. PMC 5702186. PMID 29178920. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702186
Hallen-Adams HE, Suhr MJ (3 April 2017). "Fungi in the healthy human gastrointestinal tract". Virulence. 8 (3): 352–358. doi:10.1080/21505594.2016.1247140. PMC 5411236. PMID 27736307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411236
"What fungi live in the gut? Meet the gut mycobiome". Quadram Institute. Retrieved 25 July 2024. https://quadram.ac.uk/blogs/what-fungi-live-in-the-gut-meet-the-gut-mycobiome/
"What fungi live in the gut? Meet the gut mycobiome". Quadram Institute. Retrieved 25 July 2024. https://quadram.ac.uk/blogs/what-fungi-live-in-the-gut-meet-the-gut-mycobiome/
"What fungi live in the gut? Meet the gut mycobiome". Quadram Institute. Retrieved 25 July 2024. https://quadram.ac.uk/blogs/what-fungi-live-in-the-gut-meet-the-gut-mycobiome/
Klein A (20 October 2019). "Man's body brews its own beer after yeast take over his gut microbiome". New Scientist. Retrieved 25 July 2024. https://www.newscientist.com/article/2220432-mans-body-brews-its-own-beer-after-yeast-take-over-his-gut-microbiome/
Painter K, Cordell BJ, Sticco KL (2024), "Auto-Brewery Syndrome", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 30020718, retrieved 25 July 2024 http://www.ncbi.nlm.nih.gov/books/NBK513346/
Browne HP, Shao Y, Lawley TD (October 2022). "Mother–infant transmission of human microbiota". Current Opinion in Microbiology. 69: 102173. doi:10.1016/j.mib.2022.102173. PMID 35785616. /wiki/Doi_(identifier)
Scarpellini E, Ianiro G, Attili F, et al. (2015). "The human gut microbiota and virome: Potential therapeutic implications". Digestive and Liver Disease. 47 (12): 1007–1012. doi:10.1016/j.dld.2015.07.008. PMC 7185617. PMID 26257129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185617
Gerritsen J, Smidt H, Rijkers G, et al. (27 May 2011). "Intestinal microbiota in human health and disease: the impact of probiotics". Genes & Nutrition. 6 (3): 209–240. doi:10.1007/s12263-011-0229-7. PMC 3145058. PMID 21617937. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145058
Yatsunenko T, Rey FE, Manary MJ, et al. (2012). "Human gut microbiome viewed across age and geography". Nature. 486 (7402): 222–227. Bibcode:2012Natur.486..222Y. doi:10.1038/nature11053. PMC 3376388. PMID 22699611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388
Yatsunenko T, Rey FE, Manary MJ, et al. (2012). "Human gut microbiome viewed across age and geography". Nature. 486 (7402): 222–227. Bibcode:2012Natur.486..222Y. doi:10.1038/nature11053. PMC 3376388. PMID 22699611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388
Yatsunenko T, Rey FE, Manary MJ, et al. (2012). "Human gut microbiome viewed across age and geography". Nature. 486 (7402): 222–227. Bibcode:2012Natur.486..222Y. doi:10.1038/nature11053. PMC 3376388. PMID 22699611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388
Yatsunenko T, Rey FE, Manary MJ, et al. (2012). "Human gut microbiome viewed across age and geography". Nature. 486 (7402): 222–227. Bibcode:2012Natur.486..222Y. doi:10.1038/nature11053. PMC 3376388. PMID 22699611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388
Yatsunenko T, Rey FE, Manary MJ, et al. (2012). "Human gut microbiome viewed across age and geography". Nature. 486 (7402): 222–227. Bibcode:2012Natur.486..222Y. doi:10.1038/nature11053. PMC 3376388. PMID 22699611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388
De Filippo C, Cavalieri D, Di Paola M, et al. (2010). "Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa". Proceedings of the National Academy of Sciences. 107 (33): 14691–14696. Bibcode:2010PNAS..10714691D. doi:10.1073/pnas.1005963107. PMC 2930426. PMID 20679230. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930426
Yatsunenko T, Rey FE, Manary MJ, et al. (2012). "Human gut microbiome viewed across age and geography". Nature. 486 (7402): 222–227. Bibcode:2012Natur.486..222Y. doi:10.1038/nature11053. PMC 3376388. PMID 22699611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388
Jonkers DM (2016). "Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption". Best Practice & Research Clinical Gastroenterology. 30 (2): 161–172. doi:10.1016/j.bpg.2016.02.006. PMID 27086883. /wiki/Doi_(identifier)
Million M, Diallo A, Raoult D (May 2017). "Gut microbiota and malnutrition" (PDF). Microbial Pathogenesis. 106: 127–138. doi:10.1016/j.micpath.2016.02.003. PMID 26853753. https://hal.archives-ouvertes.fr/hal-01573801/file/Million2017.pdf
Rytter MJ, Kolte L, Briend A, et al. (2014). "The Immune System in Children with Malnutrition – A Systematic Review". PLOS ONE. 9 (8): e105017. Bibcode:2014PLoSO...9j5017R. doi:10.1371/journal.pone.0105017. PMC 4143239. PMID 25153531. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143239
Alcock J, Maley CC, Aktipis CA (2014). "Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms". BioEssays. 36 (10): 940–949. doi:10.1002/bies.201400071. PMC 4270213. PMID 25103109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270213
Renson A, Herd P, Dowd JB (2020). "Sick Individuals and Sick (Microbial) Populations: Challenges in Epidemiology and the Microbiome". Annual Review of Public Health. 41: 63–80. doi:10.1146/annurev-publhealth-040119-094423. PMC 9713946. PMID 31635533. /wiki/Jennifer_Dowd
Renson A, Herd P, Dowd JB (2020). "Sick Individuals and Sick (Microbial) Populations: Challenges in Epidemiology and the Microbiome". Annual Review of Public Health. 41: 63–80. doi:10.1146/annurev-publhealth-040119-094423. PMC 9713946. PMID 31635533. /wiki/Jennifer_Dowd
Renson A, Herd P, Dowd JB (2020). "Sick Individuals and Sick (Microbial) Populations: Challenges in Epidemiology and the Microbiome". Annual Review of Public Health. 41: 63–80. doi:10.1146/annurev-publhealth-040119-094423. PMC 9713946. PMID 31635533. /wiki/Jennifer_Dowd
Colella, M., Charitos, I. A., Ballini, A., Cafiero, C., Topi, S., Palmirotta, R., & Santacroce, L. (2023). Microbiota revolution: How gut microbes regulate our lives. World journal of gastroenterology, 29(28), 4368–4383. https://doi.org/10.3748/wjg.v29.i28.4368 https://doi.org/10.3748/wjg.v29.i28.4368
Colella, M., Charitos, I. A., Ballini, A., Cafiero, C., Topi, S., Palmirotta, R., & Santacroce, L. (2023). Microbiota revolution: How gut microbes regulate our lives. World journal of gastroenterology, 29(28), 4368–4383. https://doi.org/10.3748/wjg.v29.i28.4368 https://doi.org/10.3748/wjg.v29.i28.4368
Gibson GR, Roberfroid MB (1995). "Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics". The Journal of Nutrition. 125 (6): 1401–1412. doi:10.1093/jn/125.6.1401. PMID 7782892. https://pubmed.ncbi.nlm.nih.gov/7782892/
Wang Y, Kasper LH (2014). "The role of microbiome in central nervous system disorders". Brain, Behavior, and Immunity. 38: 1–12. doi:10.1016/j.bbi.2013.12.015. PMC 4062078. PMID 24370461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062078
Huang, L., Wen, Y., Li, Z., Li, H., Fan, B., Zeng, X., & Zhang, L. (2025). The gut microbiota modulates airway inflammation in allergic asthma through the gut–lung axis related immune modulation: A review. Biomolecules and Biomedicine, 25(4), 171–185. doi:10.17305/bjbms.2024.11280
Yoon MY, Lee K, Yoon SS (2014). "Protective role of gut commensal microbes against intestinal infections". Journal of Microbiology. 52 (12): 983–989. doi:10.1007/s12275-014-4655-2. PMID 25467115. /wiki/Doi_(identifier)
Yoon MY, Lee K, Yoon SS (2014). "Protective role of gut commensal microbes against intestinal infections". Journal of Microbiology. 52 (12): 983–989. doi:10.1007/s12275-014-4655-2. PMID 25467115. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Faderl M, Noti M, Corazza N, et al. (2015). "Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis". IUBMB Life. 67 (4): 275–285. doi:10.1002/iub.1374. PMID 25914114. https://doi.org/10.1002%2Fiub.1374
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Reinoso Webb C, Koboziev I, Furr KL, et al. (2016). "Protective and pro-inflammatory roles of intestinal bacteria". Pathophysiology. 23 (2): 67–80. doi:10.1016/j.pathophys.2016.02.002. PMC 4867289. PMID 26947707. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867289
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Mantis NJ, Rol N, Corthésy B (2011). "Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut". Mucosal Immunology. 4 (6): 603–611. doi:10.1038/mi.2011.41. PMC 3774538. PMID 21975936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774538
Peterson LW, Artis D (2014). "Intestinal epithelial cells: Regulators of barrier function and immune homeostasis". Nature Reviews Immunology. 14 (3): 141–153. doi:10.1038/nri3608. PMID 24566914. /wiki/Doi_(identifier)
Peterson LW, Artis D (2014). "Intestinal epithelial cells: Regulators of barrier function and immune homeostasis". Nature Reviews Immunology. 14 (3): 141–153. doi:10.1038/nri3608. PMID 24566914. /wiki/Doi_(identifier)
Honda K, Littman DR (2016). "The microbiota in adaptive immune homeostasis and disease". Nature. 535 (7610): 75–84. Bibcode:2016Natur.535...75H. doi:10.1038/nature18848. PMID 27383982. /wiki/Bibcode_(identifier)
Honda K, Littman DR (2016). "The microbiota in adaptive immune homeostasis and disease". Nature. 535 (7610): 75–84. Bibcode:2016Natur.535...75H. doi:10.1038/nature18848. PMID 27383982. /wiki/Bibcode_(identifier)
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Lynn DJ, Benson SC, Lynn MA, et al. (January 2022). "Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms". Nature Reviews Immunology. 22 (1): 33–46. doi:10.1038/s41577-021-00554-7. ISSN 1474-1741. PMC 8127454. PMID 34002068. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127454
Clarke G, Stilling RM, Kennedy PJ, et al. (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–1238. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414803
Clarke G, Stilling RM, Kennedy PJ, et al. (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–1238. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414803
Quigley EM (2013). "Gut bacteria in health and disease". Gastroenterology & Hepatology. 9 (9): 560–569. PMC 3983973. PMID 24729765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983973
Clarke G, Stilling RM, Kennedy PJ, et al. (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–1238. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414803
Gibson GR (2004). "Fibre and effects on probiotics (the prebiotic concept)". Clinical Nutrition Supplements. 1 (2): 25–31. doi:10.1016/j.clnu.2004.09.005. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Gibson GR (2004). "Fibre and effects on probiotics (the prebiotic concept)". Clinical Nutrition Supplements. 1 (2): 25–31. doi:10.1016/j.clnu.2004.09.005. /wiki/Doi_(identifier)
Gibson GR (2004). "Fibre and effects on probiotics (the prebiotic concept)". Clinical Nutrition Supplements. 1 (2): 25–31. doi:10.1016/j.clnu.2004.09.005. /wiki/Doi_(identifier)
Hopper CP, De La Cruz LK, Lyles KV, et al. (23 December 2020). "Role of Carbon Monoxide in Host–Gut Microbiome Communication". Chemical Reviews. 120 (24): 13273–13311. doi:10.1021/acs.chemrev.0c00586. PMID 33089988. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Gibson GR (2004). "Fibre and effects on probiotics (the prebiotic concept)". Clinical Nutrition Supplements. 1 (2): 25–31. doi:10.1016/j.clnu.2004.09.005. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
O'Hara AM, Shanahan F (2006). "The gut flora as a forgotten organ". EMBO Reports. 7 (7): 688–693. doi:10.1038/sj.embor.7400731. PMC 1500832. PMID 16819463. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1500832
Rajilić-Stojanović M, De Vos WM (2014). "The first 1000 cultured species of the human gastrointestinal microbiota". FEMS Microbiology Reviews. 38 (5): 996–1047. doi:10.1111/1574-6976.12075. PMC 4262072. PMID 24861948. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262072
Hill MJ (March 1997). "Intestinal flora and endogenous vitamin synthesis". European Journal of Cancer Prevention. 6: S43 – S45. doi:10.1097/00008469-199703001-00009. PMID 9167138. /wiki/Doi_(identifier)
"The Microbiome". Tufts Now. 17 September 2013. Retrieved 9 December 2020. https://now.tufts.edu/articles/microbiome
Moraïs S, Winkler S, Zorea A, et al. (15 March 2024). "Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans". Science. 383 (6688): eadj9223. Bibcode:2024Sci...383j9223M. doi:10.1126/science.adj9223. PMC 7615765. PMID 38484069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615765
ElRakaiby M, Dutilh BE, Rizkallah MR, et al. (July 2014). "Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics". Omics. 18 (7): 402–414. doi:10.1089/omi.2014.0018. PMC 4086029. PMID 24785449. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086029
Cho I, Blaser MJ (March 2012). "The human microbiome: at the interface of health and disease". Nature Reviews. Genetics. 13 (4): 260–270. doi:10.1038/nrg3182. PMC 3418802. PMID 22411464. The composition of the microbiome varies by anatomical site (Figure 1). The primary determinant of community composition is anatomical location: interpersonal variation is substantial23,24 and is higher than the temporal variability seen at most sites in a single individual25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418802
There is substantial variation in microbiome composition and microbial concentrations by anatomical site.[76][77] Fluid from the human colon – which contains the highest concentration of microbes of any anatomical site – contains approximately one trillion (10^12) bacterial cells/ml.[76]
ElRakaiby M, Dutilh BE, Rizkallah MR, et al. (July 2014). "Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics". Omics. 18 (7): 402–414. doi:10.1089/omi.2014.0018. PMC 4086029. PMID 24785449. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086029
Hutter T, Gimbert C, Bouchard F, et al. (2015). "Being human is a gut feeling". Microbiome. 3: 9. doi:10.1186/s40168-015-0076-7. PMC 4359430. PMID 25774294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359430
ElRakaiby M, Dutilh BE, Rizkallah MR, et al. (July 2014). "Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics". Omics. 18 (7): 402–414. doi:10.1089/omi.2014.0018. PMC 4086029. PMID 24785449. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086029
Cho I, Blaser MJ (March 2012). "The human microbiome: at the interface of health and disease". Nature Reviews. Genetics. 13 (4): 260–270. doi:10.1038/nrg3182. PMC 3418802. PMID 22411464. The composition of the microbiome varies by anatomical site (Figure 1). The primary determinant of community composition is anatomical location: interpersonal variation is substantial23,24 and is higher than the temporal variability seen at most sites in a single individual25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418802
Kumar K, Dhoke GV, Sharma AK, et al. (July 2019). "Mechanistic elucidation of amphetamine metabolism by tyramine oxidase from human gut microbiota using molecular dynamics simulations". Journal of Cellular Biochemistry. 120 (7): 11206–11215. doi:10.1002/jcb.28396. PMID 30701587. /wiki/Doi_(identifier)
Sousa T, Paterson R, Moore V, et al. (2008). "The gastrointestinal microbiota as a site for the biotransformation of drugs". International Journal of Pharmaceutics. 363 (1–2): 1–25. doi:10.1016/j.ijpharm.2008.07.009. PMID 18682282. /wiki/Doi_(identifier)
Haiser HJ, Gootenberg DB, Chatman K, et al. (2013). "Predicting and Manipulating Cardiac Drug Inactivation by the Human Gut Bacterium Eggerthella lenta". Science. 341 (6143): 295–298. Bibcode:2013Sci...341..295H. doi:10.1126/science.1235872. PMC 3736355. PMID 23869020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736355
Koppel N, Maini Rekdal V, Balskus EP (23 June 2017). "Chemical transformation of xenobiotics by the human gut microbiota". Science. 356 (6344). doi:10.1126/science.aag2770. PMC 5534341. PMID 28642381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534341
Spanogiannopoulos P, Bess EN, Carmody RN, et al. (May 2016). "The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism". Nature Reviews Microbiology. 14 (5): 273–287. doi:10.1038/nrmicro.2016.17. PMC 5243131. PMID 26972811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243131
Maini Rekdal V, Bess EN, Bisanz JE, et al. (14 June 2019). "Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism". Science. 364 (6445). doi:10.1126/science.aau6323. PMC 7745125. PMID 31196984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745125
Dempsey JL, Cui JY (December 2019). "Microbiome Is a Functional Modifier of P450 Drug Metabolism". Current Pharmacology Reports. 5 (6): 481–490. doi:10.1007/s40495-019-00200-w. PMC 7731899. PMID 33312848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731899
Spanogiannopoulos P, Bess EN, Carmody RN, et al. (May 2016). "The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism". Nature Reviews Microbiology. 14 (5): 273–287. doi:10.1038/nrmicro.2016.17. PMC 5243131. PMID 26972811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243131
Boerner U, Abbott S, Roe RL (January 1975). "The Metabolism of Morphine and Heroin in Man". Drug Metabolism Reviews. 4 (1): 39–73. doi:10.3109/03602537508993748. PMID 1204496. /wiki/Doi_(identifier)
Dobkin JF, Saha JR, Butler VP, et al. (15 April 1983). "Digoxin-Inactivating Bacteria: Identification in Human Gut Flora". Science. 220 (4594): 325–327. doi:10.1126/science.6836275. PMID 6836275. /wiki/Doi_(identifier)
Sahota SS, Bramley PM, Menzies IS (February 1982). "The Fermentation of Lactulose by Colonic Bacteria". Microbiology. 128 (2): 319–325. doi:10.1099/00221287-128-2-319. PMID 6804597. https://doi.org/10.1099%2F00221287-128-2-319
Yoo DH, Kim IS, Van Le TK, et al. (September 2014). "Gut Microbiota-Mediated Drug Interactions between Lovastatin and Antibiotics". Drug Metabolism and Disposition. 42 (9): 1508–1513. doi:10.1124/dmd.114.058354. PMID 24947972. /wiki/Doi_(identifier)
Haiser HJ, Gootenberg DB, Chatman K, et al. (19 July 2013). "Predicting and Manipulating Cardiac Drug Inactivation by the Human Gut Bacterium Eggerthella lenta". Science. 341 (6143): 295–298. Bibcode:2013Sci...341..295H. doi:10.1126/science.1235872. PMC 3736355. PMID 23869020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736355
Parvez MM, Basit A, Jariwala PB, et al. (August 2021). "Quantitative Investigation of Irinotecan Metabolism, Transport, and Gut Microbiome Activation". Drug Metabolism and Disposition. 49 (8): 683–693. doi:10.1124/dmd.121.000476. PMC 8407663. PMID 34074730. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407663
Sousa T, Paterson R, Moore V, et al. (November 2008). "The gastrointestinal microbiota as a site for the biotransformation of drugs". International Journal of Pharmaceutics. 363 (1–2): 1–25. doi:10.1016/j.ijpharm.2008.07.009. PMID 18682282. /wiki/Doi_(identifier)
Koppel N, Maini Rekdal V, Balskus EP (23 June 2017). "Chemical transformation of xenobiotics by the human gut microbiota". Science. 356 (6344). doi:10.1126/science.aag2770. PMC 5534341. PMID 28642381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534341
Maini Rekdal V, Bess EN, Bisanz JE, et al. (14 June 2019). "Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism". Science. 364 (6445). doi:10.1126/science.aau6323. PMC 7745125. PMID 31196984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745125
Dempsey JL, Cui JY (December 2019). "Microbiome Is a Functional Modifier of P450 Drug Metabolism". Current Pharmacology Reports. 5 (6): 481–490. doi:10.1007/s40495-019-00200-w. PMC 7731899. PMID 33312848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731899
Sousa T, Paterson R, Moore V, et al. (November 2008). "The gastrointestinal microbiota as a site for the biotransformation of drugs". International Journal of Pharmaceutics. 363 (1–2): 1–25. doi:10.1016/j.ijpharm.2008.07.009. PMID 18682282. /wiki/Doi_(identifier)
Spanogiannopoulos P, Bess EN, Carmody RN, et al. (May 2016). "The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism". Nature Reviews Microbiology. 14 (5): 273–287. doi:10.1038/nrmicro.2016.17. PMC 5243131. PMID 26972811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243131
Yoo DH, Kim IS, Van Le TK, et al. (September 2014). "Gut Microbiota-Mediated Drug Interactions between Lovastatin and Antibiotics". Drug Metabolism and Disposition. 42 (9): 1508–1513. doi:10.1124/dmd.114.058354. PMID 24947972. /wiki/Doi_(identifier)
Koppel N, Bisanz JE, Pandelia ME, et al. (15 May 2018). "Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins". eLife. 7. doi:10.7554/eLife.33953. PMC 5953540. PMID 29761785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953540
Koppel N, Bisanz JE, Pandelia ME, et al. (15 May 2018). "Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins". eLife. 7. doi:10.7554/eLife.33953. PMC 5953540. PMID 29761785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953540
Alexander JL, Wilson ID, Teare J, et al. (June 2017). "Gut microbiota modulation of chemotherapy efficacy and toxicity". Nature Reviews Gastroenterology & Hepatology. 14 (6): 356–365. doi:10.1038/nrgastro.2017.20. hdl:10044/1/77636. PMID 28270698. /wiki/Doi_(identifier)
Brandi G, Dabard J, Raibaud P, et al. (15 February 2006). "Intestinal microflora and digestive toxicity of irinotecan in mice". Clinical Cancer Research. 12 (4): 1299–1307. doi:10.1158/1078-0432.CCR-05-0750. PMID 16489087. /wiki/Doi_(identifier)
Koh A, De Vadder F, Kovatcheva-Datchary P, et al. (June 2016). "From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites". Cell. 165 (6): 1332–1345. doi:10.1016/j.cell.2016.05.041. PMID 27259147. https://doi.org/10.1016%2Fj.cell.2016.05.041
Konopelski P, Ufnal M (14 September 2018). "Indoles - Gut Bacteria Metabolites of Tryptophan with Pharmacotherapeutic Potential". Current Drug Metabolism. 19 (10): 883–890. doi:10.2174/1389200219666180427164731. PMID 29708069. /wiki/Doi_(identifier)
Collins SL, Stine JG, Bisanz JE, et al. (April 2023). "Bile acids and the gut microbiota: metabolic interactions and impacts on disease". Nature Reviews Microbiology. 21 (4): 236–247. doi:10.1038/s41579-022-00805-x. PMID 36253479. /wiki/Doi_(identifier)
Yang W, Yu T, Huang X, et al. (8 September 2020). "Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity". Nature Communications. 11 (1): 4457. Bibcode:2020NatCo..11.4457Y. doi:10.1038/s41467-020-18262-6. PMC 7478978. PMID 32901017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478978
Murugesan S, Nirmalkar K, Hoyo-Vadillo C, et al. (April 2018). "Gut microbiome production of short-chain fatty acids and obesity in children". European Journal of Clinical Microbiology & Infectious Diseases. 37 (4): 621–625. doi:10.1007/s10096-017-3143-0. PMID 29196878. /wiki/Doi_(identifier)
Thanissery R, Winston JA, Theriot CM (June 2017). "Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids". Anaerobe. 45: 86–100. doi:10.1016/j.anaerobe.2017.03.004. PMC 5466893. PMID 28279860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466893
Collins SL, Stine JG, Bisanz JE, et al. (April 2023). "Bile acids and the gut microbiota: metabolic interactions and impacts on disease". Nature Reviews Microbiology. 21 (4): 236–247. doi:10.1038/s41579-022-00805-x. PMID 36253479. /wiki/Doi_(identifier)
Jones BV, Begley M, Hill C, et al. (9 September 2008). "Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome". Proceedings of the National Academy of Sciences. 105 (36): 13580–13585. Bibcode:2008PNAS..10513580J. doi:10.1073/pnas.0804437105. PMC 2533232. PMID 18757757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533232
Jones BV, Begley M, Hill C, et al. (9 September 2008). "Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome". Proceedings of the National Academy of Sciences. 105 (36): 13580–13585. Bibcode:2008PNAS..10513580J. doi:10.1073/pnas.0804437105. PMC 2533232. PMID 18757757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533232
Jones BV, Begley M, Hill C, et al. (9 September 2008). "Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome". Proceedings of the National Academy of Sciences. 105 (36): 13580–13585. Bibcode:2008PNAS..10513580J. doi:10.1073/pnas.0804437105. PMC 2533232. PMID 18757757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533232
Thanissery R, Winston JA, Theriot CM (June 2017). "Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids". Anaerobe. 45: 86–100. doi:10.1016/j.anaerobe.2017.03.004. PMC 5466893. PMID 28279860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466893
Cao H, Xu M, Dong W, et al. (June 2017). "Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis". International Journal of Cancer. 140 (11): 2545–2556. doi:10.1002/ijc.30643. PMID 28187526. https://doi.org/10.1002%2Fijc.30643
Cao H, Xu M, Dong W, et al. (June 2017). "Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis". International Journal of Cancer. 140 (11): 2545–2556. doi:10.1002/ijc.30643. PMID 28187526. https://doi.org/10.1002%2Fijc.30643
Bernstein H, Bernstein C (January 2023). "Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system". Experimental Biology and Medicine. 248 (1): 79–89. doi:10.1177/15353702221131858. PMC 9989147. PMID 36408538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989147
Bernstein H, Bernstein C (January 2023). "Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system". Experimental Biology and Medicine. 248 (1): 79–89. doi:10.1177/15353702221131858. PMC 9989147. PMID 36408538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989147
Wang Y, Kasper LH (2014). "The role of microbiome in central nervous system disorders". Brain, Behavior, and Immunity. 38: 1–12. doi:10.1016/j.bbi.2013.12.015. PMC 4062078. PMID 24370461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062078
Wang Y, Kasper LH (2014). "The role of microbiome in central nervous system disorders". Brain, Behavior, and Immunity. 38: 1–12. doi:10.1016/j.bbi.2013.12.015. PMC 4062078. PMID 24370461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062078
Mayer EA, Knight R, Mazmanian SK, et al. (2014). "Gut Microbes and the Brain: Paradigm Shift in Neuroscience". Journal of Neuroscience. 34 (46): 15490–15496. doi:10.1523/JNEUROSCI.3299-14.2014. PMC 4228144. PMID 25392516. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228144
Dinan TG, Cryan JF (2015). "The impact of gut microbiota on brain and behavior". Current Opinion in Clinical Nutrition and Metabolic Care. 18 (6): 552–558. doi:10.1097/MCO.0000000000000221. PMID 26372511. /wiki/Doi_(identifier)
Wang Y, Kasper LH (2014). "The role of microbiome in central nervous system disorders". Brain, Behavior, and Immunity. 38: 1–12. doi:10.1016/j.bbi.2013.12.015. PMC 4062078. PMID 24370461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062078
Dinan TG, Cryan JF (2015). "The impact of gut microbiota on brain and behavior". Current Opinion in Clinical Nutrition and Metabolic Care. 18 (6): 552–558. doi:10.1097/MCO.0000000000000221. PMID 26372511. /wiki/Doi_(identifier)
Wang H, Lee IS, Braun C, et al. (2016). "Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review". Journal of Neurogastroenterology and Motility. 22 (4): 589–605. doi:10.5056/jnm16018. PMC 5056568. PMID 27413138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056568
Carman RJ, Simon MA, Fernández H, et al. (2004). "Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats". Regulatory Toxicology and Pharmacology. 40 (3): 319–326. doi:10.1016/j.yrtph.2004.08.005. PMID 15546686. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Carman RJ, Simon MA, Fernández H, et al. (2004). "Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats". Regulatory Toxicology and Pharmacology. 40 (3): 319–326. doi:10.1016/j.yrtph.2004.08.005. PMID 15546686. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Beaugerie L, Petit JC (2004). "Antibiotic-associated diarrhoea". Best Practice & Research Clinical Gastroenterology. 18 (2): 337–352. doi:10.1016/j.bpg.2003.10.002. PMID 15123074. /wiki/Doi_(identifier)
Carman RJ, Simon MA, Fernández H, et al. (2004). "Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats". Regulatory Toxicology and Pharmacology. 40 (3): 319–326. doi:10.1016/j.yrtph.2004.08.005. PMID 15546686. /wiki/Doi_(identifier)
Hvas CL, Baunwall SM, Erikstrup C (July 2020). "Faecal microbiota transplantation: A life-saving therapy challenged by commercial claims for exclusivity". eClinicalMedicine. 24: 100436. doi:10.1016/j.eclinm.2020.100436. PMC 7334803. PMID 32642633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334803
Brandt LJ, Borody TJ, Campbell J (2011). "Endoscopic Fecal Microbiota Transplantation". Journal of Clinical Gastroenterology. 45 (8): 655–657. doi:10.1097/MCG.0b013e3182257d4f. PMID 21716124. https://doi.org/10.1097%2FMCG.0b013e3182257d4f
Knight D, Girling KJ (2003). "Gut flora in health and disease". The Lancet. 361 (9371): 512–519. doi:10.1016/S0140-6736(03)13438-1. PMID 12781578. https://doi.org/10.1016%2FS0140-6736%2803%2913438-1
Cho I, Yamanishi S, Cox L, et al. (2012). "Antibiotics in early life alter the murine colonic microbiome and adiposity". Nature. 488 (7413): 621–626. Bibcode:2012Natur.488..621C. doi:10.1038/nature11400. PMC 3553221. PMID 22914093. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221
Schneiderhan J, Master-Hunter T, Locke A (2016). "Targeting gut flora to treat and prevent disease". The Journal of Family Practice. 65 (1): 34–38. PMID 26845162. /wiki/PMID_(identifier)
Mueller NT, Bakacs E, Combellick J, et al. (2015). "The infant microbiome development: mom matters". Trends in Molecular Medicine. 21 (2): 109–117. doi:10.1016/j.molmed.2014.12.002. PMC 4464665. PMID 25578246. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665
Baker M (2012). "Pregnancy alters resident gut microbes". Nature. doi:10.1038/nature.2012.11118. https://doi.org/10.1038%2Fnature.2012.11118
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa Md (3 July 2021). "Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges". Current Rheumatology Reports. 23 (8): 67. doi:10.1007/s11926-021-01031-9. ISSN 1534-6307. PMID 34218340. https://link.springer.com/article/10.1007/s11926-021-01031-9
Hill C, Guarner F, Reid G, et al. (2014). "The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic". Nature Reviews Gastroenterology & Hepatology. 11 (8): 506–514. doi:10.1038/nrgastro.2014.66. hdl:2164/4189. PMID 24912386. https://doi.org/10.1038%2Fnrgastro.2014.66
Rijkers GT, De Vos WM, Brummer RJ, et al. (2011). "Health benefits and health claims of probiotics: Bridging science and marketing". British Journal of Nutrition. 106 (9): 1291–1296. doi:10.1017/S000711451100287X. PMID 21861940. https://doi.org/10.1017%2FS000711451100287X
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa Md (3 July 2021). "Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges". Current Rheumatology Reports. 23 (8): 67. doi:10.1007/s11926-021-01031-9. ISSN 1534-6307. PMID 34218340. https://link.springer.com/article/10.1007/s11926-021-01031-9
Gibson GR (2004). "Fibre and effects on probiotics (the prebiotic concept)". Clinical Nutrition Supplements. 1 (2): 25–31. doi:10.1016/j.clnu.2004.09.005. /wiki/Doi_(identifier)
Hutkins RW, Krumbeck JA, Bindels LB, et al. (2016). "Prebiotics: Why definitions matter". Current Opinion in Biotechnology. 37: 1–7. doi:10.1016/j.copbio.2015.09.001. PMC 4744122. PMID 26431716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744122
Pandey KR, Naik SR, Vakil BV (2015). "Probiotics, prebiotics and synbiotics- a review". Journal of Food Science and Technology. 52 (12): 7577–7587. doi:10.1007/s13197-015-1921-1. PMC 4648921. PMID 26604335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648921
Broeckx G, Vandenheuvel D, Claes IJ, et al. (2016). "Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics" (PDF). International Journal of Pharmaceutics. 505 (1–2): 303–318. doi:10.1016/j.ijpharm.2016.04.002. hdl:10067/1328840151162165141. PMID 27050865. https://repository.uantwerpen.be/docman/irua/9d9f03/132884.pdf
Sleator RD, Hill C (2009). "Rational Design of Improved Pharmabiotics". Journal of Biomedicine and Biotechnology. 2009: 275287. doi:10.1155/2009/275287. PMC 2742647. PMID 19753318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742647
Patterson E, Cryan JF, Fitzgerald GF, et al. (2014). "Gut microbiota, the pharmabiotics they produce and host health". Proceedings of the Nutrition Society. 73 (4): 477–489. doi:10.1017/S0029665114001426. PMID 25196939. https://doi.org/10.1017%2FS0029665114001426
Ford AC, Quigley EM, Lacy BE, et al. (2014). "Efficacy of Prebiotics, Probiotics and Synbiotics in Irritable Bowel Syndrome and Chronic Idiopathic Constipation: Systematic Review and Meta-analysis". The American Journal of Gastroenterology. 109 (10): 1547–1561, quiz 1546, 1562. doi:10.1038/ajg.2014.202. PMID 25070051. /wiki/Doi_(identifier)
Dupont A, Richards, Jelinek KA, et al. (2014). "Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease". Clinical and Experimental Gastroenterology. 7: 473–487. doi:10.2147/CEG.S27530. PMC 4266241. PMID 25525379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266241
Yu CG, Huang Q (2013). "Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease". Journal of Digestive Diseases. 14 (10): 513–517. doi:10.1111/1751-2980.12087. PMID 23848393. https://doi.org/10.1111%2F1751-2980.12087
Crucillà S, Caldart F, Michelon M, et al. (14 August 2024). "Functional Abdominal Bloating and Gut Microbiota: An Update". Microorganisms. 12 (8): 1669. doi:10.3390/microorganisms12081669. PMC 11357468. PMID 39203511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357468
Maier L, Pruteanu M, Kuhn M, et al. (2018). "Extensive impact of non-antibiotic drugs on human gut bacteria". Nature. 555 (7698): 623–628. Bibcode:2018Natur.555..623M. doi:10.1038/nature25979. PMC 6108420. PMID 29555994. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108420
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Guarner F, Malagelada J (2003). "Gut flora in health and disease". The Lancet. 361 (9356): 512–519. doi:10.1016/S0140-6736(03)12489-0. PMID 12583961. /wiki/Doi_(identifier)
Kamboj AK, Cotter TG, Oxentenko AS (April 2017). "Helicobacter pylori". Mayo Clinic Proceedings. 92 (4): 599–604. doi:10.1016/j.mayocp.2016.11.017. PMID 28209367. /wiki/Doi_(identifier)
"Peptic ulcer disease" (PDF). The Johns Hopkins University School of Medicine. 2013. Retrieved 21 October 2020. https://www.hopkinsmedicine.org/gastroenterology_hepatology/_pdfs/esophagus_stomach/peptic_ulcer_disease.pdf
"Peptic ulcer disease" (PDF). The Johns Hopkins University School of Medicine. 2013. Retrieved 21 October 2020. https://www.hopkinsmedicine.org/gastroenterology_hepatology/_pdfs/esophagus_stomach/peptic_ulcer_disease.pdf
Kamboj AK, Cotter TG, Oxentenko AS (April 2017). "Helicobacter pylori". Mayo Clinic Proceedings. 92 (4): 599–604. doi:10.1016/j.mayocp.2016.11.017. PMID 28209367. /wiki/Doi_(identifier)
"Peptic ulcer disease" (PDF). The Johns Hopkins University School of Medicine. 2013. Retrieved 21 October 2020. https://www.hopkinsmedicine.org/gastroenterology_hepatology/_pdfs/esophagus_stomach/peptic_ulcer_disease.pdf
Sommer F, Bäckhed F (2013). "The gut microbiota – masters of host development and physiology". Nature Reviews Microbiology. 11 (4): 227–238. doi:10.1038/nrmicro2974. PMID 23435359. /wiki/Doi_(identifier)
Faderl M, Noti M, Corazza N, et al. (2015). "Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis". IUBMB Life. 67 (4): 275–285. doi:10.1002/iub.1374. PMID 25914114. https://doi.org/10.1002%2Fiub.1374
Faderl M, Noti M, Corazza N, et al. (2015). "Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis". IUBMB Life. 67 (4): 275–285. doi:10.1002/iub.1374. PMID 25914114. https://doi.org/10.1002%2Fiub.1374
Sherwood L, Willey J, Woolverton CJ (2013). Prescott's Microbiology. McGraw-Hill Education. pp. 713–721. ISBN 978-0-07-340240-6. 978-0-07-340240-6
Shen S, Wong CH (2016). "Bugging inflammation: Role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855262
Burisch J, Jess T, Martinato M, et al. (2013). "The burden of inflammatory bowel disease in Europe". Journal of Crohn's and Colitis. 7 (4): 322–337. doi:10.1016/j.crohns.2013.01.010. PMID 23395397. https://doi.org/10.1016%2Fj.crohns.2013.01.010
Blandino G, Inturri R, Lazzara F, et al. (2016). "Impact of gut microbiota on diabetes mellitus". Diabetes & Metabolism. 42 (5): 303–315. doi:10.1016/j.diabet.2016.04.004. PMID 27179626. /wiki/Doi_(identifier)
Boulangé CL, Neves AL, Chilloux J, et al. (2016). "Impact of the gut microbiota on inflammation, obesity, and metabolic disease". Genome Medicine. 8 (1): 42. doi:10.1186/s13073-016-0303-2. PMC 4839080. PMID 27098727. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839080
Saxena R, Sharma V (2016). "A Metagenomic Insight Into the Human Microbiome: Its Implications in Health and Disease". In Kumar D, S. Antonarakis (eds.). Medical and Health Genomics. Elsevier Science. p. 117. doi:10.1016/B978-0-12-420196-5.00009-5. ISBN 978-0-12-799922-7. 978-0-12-799922-7
Saxena R, Sharma V (2016). "A Metagenomic Insight Into the Human Microbiome: Its Implications in Health and Disease". In Kumar D, S. Antonarakis (eds.). Medical and Health Genomics. Elsevier Science. p. 117. doi:10.1016/B978-0-12-420196-5.00009-5. ISBN 978-0-12-799922-7. 978-0-12-799922-7
Schneiderhan J, Master-Hunter T, Locke A (2016). "Targeting gut flora to treat and prevent disease". The Journal of Family Practice. 65 (1): 34–38. PMID 26845162. /wiki/PMID_(identifier)
Dinan TG, Cryan JF (2015). "The impact of gut microbiota on brain and behavior". Current Opinion in Clinical Nutrition and Metabolic Care. 18 (6): 552–558. doi:10.1097/MCO.0000000000000221. PMID 26372511. /wiki/Doi_(identifier)
Arrieta MC, Stiemsma LT, Dimitriu PA, et al. (2015). "Early infancy microbial and metabolic alterations affect risk of childhood asthma". Science Translational Medicine. 7 (307): 307ra152. doi:10.1126/scitranslmed.aab2271. PMID 26424567. https://doi.org/10.1126%2Fscitranslmed.aab2271
Shen S, Wong CH (2016). "Bugging inflammation: Role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855262
Arrieta MC, Stiemsma LT, Dimitriu PA, et al. (2015). "Early infancy microbial and metabolic alterations affect risk of childhood asthma". Science Translational Medicine. 7 (307): 307ra152. doi:10.1126/scitranslmed.aab2271. PMID 26424567. https://doi.org/10.1126%2Fscitranslmed.aab2271
Stiemsma LT, Turvey SE (2017). "Asthma and the microbiome: Defining the critical window in early life". Allergy, Asthma & Clinical Immunology. 13: 3. doi:10.1186/s13223-016-0173-6. PMC 5217603. PMID 28077947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217603
Arrieta MC, Stiemsma LT, Dimitriu PA, et al. (2015). "Early infancy microbial and metabolic alterations affect risk of childhood asthma". Science Translational Medicine. 7 (307): 307ra152. doi:10.1126/scitranslmed.aab2271. PMID 26424567. https://doi.org/10.1126%2Fscitranslmed.aab2271
Shen S, Wong CH (2016). "Bugging inflammation: Role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855262
Stiemsma LT, Turvey SE (2017). "Asthma and the microbiome: Defining the critical window in early life". Allergy, Asthma & Clinical Immunology. 13: 3. doi:10.1186/s13223-016-0173-6. PMC 5217603. PMID 28077947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217603
Shen S, Wong CH (2016). "Bugging inflammation: Role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855262
Ipci K, Altıntoprak N, Muluk NB, et al. (2016). "The possible mechanisms of the human microbiome in allergic diseases". European Archives of Oto-Rhino-Laryngology. 274 (2): 617–626. doi:10.1007/s00405-016-4058-6. PMID 27115907. /wiki/Doi_(identifier)
Mariño E, Richards JL, McLeod KH, et al. (May 2017). "Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes". Nature Immunology. 18 (5): 552–562. doi:10.1038/ni.3713. PMID 28346408. /wiki/Doi_(identifier)
Bettelli E, Carrier Y, Gao W, et al. (May 2006). "Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells". Nature. 441 (7090): 235–238. doi:10.1038/nature04753. PMID 16648838. /wiki/Doi_(identifier)
Säemann MD, Böhmig GA, Österreicher CH, et al. (December 2000). "Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production". The FASEB Journal. 14 (15): 2380–2382. doi:10.1096/fj.00-0359fje. PMID 11024006. https://doi.org/10.1096%2Ffj.00-0359fje
Gao Z, Yin J, Zhang J, et al. (2009). "Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice". Diabetes. 58 (7): 1509–1517. doi:10.2337/db08-1637. PMC 2699871. PMID 19366864. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699871
Säemann MD, Böhmig GA, Österreicher CH, et al. (December 2000). "Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production". The FASEB Journal. 14 (15): 2380–2382. doi:10.1096/fj.00-0359fje. PMID 11024006. https://doi.org/10.1096%2Ffj.00-0359fje
Boulangé CL, Neves AL, Chilloux J, et al. (2016). "Impact of the gut microbiota on inflammation, obesity, and metabolic disease". Genome Medicine. 8 (1): 42. doi:10.1186/s13073-016-0303-2. PMC 4839080. PMID 27098727. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839080
Mazidi M, Rezaie P, Kengne AP, et al. (2016). "Gut microbiome and metabolic syndrome". Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 10 (2): S150–157. doi:10.1016/j.dsx.2016.01.024. PMID 26916014. /wiki/Doi_(identifier)
Schneiderhan J, Master-Hunter T, Locke A (2016). "Targeting gut flora to treat and prevent disease". The Journal of Family Practice. 65 (1): 34–38. PMID 26845162. /wiki/PMID_(identifier)
Alcock J, Maley CC, Aktipis CA (2014). "Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms". BioEssays. 36 (10): 940–949. doi:10.1002/bies.201400071. PMC 4270213. PMID 25103109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270213
Chen X, d'Souza R, Hong ST (2013). "The role of gut microbiota in the gut-brain axis: Current challenges and perspectives". Protein & Cell. 4 (6): 403–414. doi:10.1007/s13238-013-3017-x. PMC 4875553. PMID 23686721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875553
Boulangé CL, Neves AL, Chilloux J, et al. (2016). "Impact of the gut microbiota on inflammation, obesity, and metabolic disease". Genome Medicine. 8 (1): 42. doi:10.1186/s13073-016-0303-2. PMC 4839080. PMID 27098727. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839080
Moeller AH, Li Y, Mpoudi Ngole E, et al. (18 November 2014). "Rapid changes in the gut microbiome during human evolution". Proceedings of the National Academy of Sciences. 111 (46): 16431–16435. Bibcode:2014PNAS..11116431M. doi:10.1073/pnas.1419136111. PMC 4246287. PMID 25368157. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246287
Moeller AH, Li Y, Mpoudi Ngole E, et al. (18 November 2014). "Rapid changes in the gut microbiome during human evolution". Proceedings of the National Academy of Sciences. 111 (46): 16431–16435. Bibcode:2014PNAS..11116431M. doi:10.1073/pnas.1419136111. PMC 4246287. PMID 25368157. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246287
Engel P, Moran N (2013). "The gut microbiota of insects–diversity in structure and function". FEMS Microbiology Reviews. 37 (5): 699–735. doi:10.1111/1574-6976.12025. PMID 23692388. https://doi.org/10.1111%2F1574-6976.12025
Brune A (2014). "Symbiotic digestion of lignocellulose in termite guts". Nature Reviews Microbiology. 12 (3): 168–180. doi:10.1038/nrmicro3182. PMID 24487819. /wiki/Doi_(identifier)
Rosengaus RB, Zecher CN, Schultheis KF, et al. (July 2011). "Disruption of the Termite Gut Microbiota and Its Prolonged Consequences for Fitness". Applied and Environmental Microbiology. 77 (13): 4303–4312. Bibcode:2011ApEnM..77.4303R. doi:10.1128/AEM.01886-10. PMC 3127728. PMID 21571887. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127728
Ashbrook AR, Schwarz M, Schal C, et al. (14 October 2024). "Lethal disruption of the bacterial gut community in Eastern subterranean termite caused by boric acid". Journal of Economic Entomology. doi:10.1093/jee/toae221. PMC 11682946. PMID 39401329. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682946
Ashbrook AR, Schwarz M, Schal C, et al. (14 October 2024). "Lethal disruption of the bacterial gut community in Eastern subterranean termite caused by boric acid". Journal of Economic Entomology. doi:10.1093/jee/toae221. PMC 11682946. PMID 39401329. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682946
Dietrich C, Köhler T, Brune A (2014). "The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events". Applied and Environmental Microbiology. 80 (7): 2261–2269. Bibcode:2014ApEnM..80.2261D. doi:10.1128/AEM.04206-13. PMC 3993134. PMID 24487532. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993134
Mikaelyan A, Dietrich C, Köhler T, et al. (2015). "Diet is the primary determinant of bacterial community structure in the guts of higher termites". Molecular Ecology. 24 (20): 5824–5895. Bibcode:2015MolEc..24.5284M. doi:10.1111/mec.13376. PMID 26348261. /wiki/Bibcode_(identifier)
Mikaelyan A, Thompson C, Hofer M, et al. (2016). "The deterministic assembly of complex bacterial communities in germ-free cockroach guts". Applied and Environmental Microbiology. 82 (4): 1256–1263. doi:10.1128/AEM.03700-15. PMC 4751828. PMID 26655763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751828
Dietrich C, Köhler T, Brune A (2014). "The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events". Applied and Environmental Microbiology. 80 (7): 2261–2269. Bibcode:2014ApEnM..80.2261D. doi:10.1128/AEM.04206-13. PMC 3993134. PMID 24487532. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993134
Mikaelyan A, Dietrich C, Köhler T, et al. (2015). "Diet is the primary determinant of bacterial community structure in the guts of higher termites". Molecular Ecology. 24 (20): 5824–5895. Bibcode:2015MolEc..24.5284M. doi:10.1111/mec.13376. PMID 26348261. /wiki/Bibcode_(identifier)
Cho I, Yamanishi S, Cox L, et al. (2012). "Antibiotics in early life alter the murine colonic microbiome and adiposity". Nature. 488 (7413): 621–626. Bibcode:2012Natur.488..621C. doi:10.1038/nature11400. PMC 3553221. PMID 22914093. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221
Cho I, Yamanishi S, Cox L, et al. (2012). "Antibiotics in early life alter the murine colonic microbiome and adiposity". Nature. 488 (7413): 621–626. Bibcode:2012Natur.488..621C. doi:10.1038/nature11400. PMC 3553221. PMID 22914093. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221