In this protocol, each block in the local cache is in one of these four states:
These states have exactly the same meanings as the four states of the MESI protocol (they are simply listed in reverse order), but this is a simplified form of it that avoids the Read for Ownership operation. Instead, all invalidation is done by writes to main memory.
For any given pair of caches, the permitted states of a given cache line are as follows (abbreviated in the order above):
The protocol follows some transition rules for each event:
This is a variant of the MESI protocol, but there is no explicit read-for-ownership or broadcast invalidate operation to bring a line into cache in the Exclusive state without performing a main memory write. Instead, the first write to a Valid (a.k.a. Shared) cache line performs a write through to memory, which implicitly invalidates other caches. After that, the line is in the Reserved (Exclusive) state, and further writes can be done without reference to main memory, leaving the cache line in the Dirty (Modified) state.
Goodman, James R. (1983). "Using cache memory to reduce processor-memory traffic". ACM Sigarch Computer Architecture News. 11 (3): 124–131. doi:10.1145/1067651.801647. https://doi.org/10.1145%2F1067651.801647 ↩