If X {\displaystyle X} is a noncentral chi-squared random variable with noncentrality parameter λ {\displaystyle \lambda } and ν 1 {\displaystyle \nu _{1}} degrees of freedom, and Y {\displaystyle Y} is a chi-squared random variable with ν 2 {\displaystyle \nu _{2}} degrees of freedom that is statistically independent of X {\displaystyle X} , then
is a noncentral F-distributed random variable. The probability density function (pdf) for the noncentral F-distribution is1
when f ≥ 0 {\displaystyle f\geq 0} and zero otherwise. The degrees of freedom ν 1 {\displaystyle \nu _{1}} and ν 2 {\displaystyle \nu _{2}} are positive. The term B ( x , y ) {\displaystyle B(x,y)} is the beta function, where
The cumulative distribution function for the noncentral F-distribution is
where I {\displaystyle I} is the regularized incomplete beta function.
The mean and variance of the noncentral F-distribution are
and
When λ = 0, the noncentral F-distribution becomes the F-distribution.
Z has a noncentral chi-squared distribution if
where F has a noncentral F-distribution.
See also noncentral t-distribution.
The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.2
A collaborative wiki page implements an interactive online calculator, programmed in the R language, for the noncentral t, chi-squared, and F distributions, at the Institute of Statistics and Econometrics of the Humboldt University of Berlin.3
Kay, S. (1998). Fundamentals of Statistical Signal Processing: Detection Theory. New Jersey: Prentice Hall. p. 29. ISBN 0-13-504135-X. 0-13-504135-X ↩
John Maddock; Paul A. Bristow; Hubert Holin; Xiaogang Zhang; Bruno Lalande; Johan Råde. "Noncentral F Distribution: Boost 1.39.0". Boost.org. Retrieved 20 August 2011. http://www.boost.org/doc/libs/1_39_0/libs/math/doc/sf_and_dist/html/math_toolkit/dist/dist_ref/dists/nc_f_dist.html ↩
Sigbert Klinke (10 December 2008). "Comparison of noncentral and central distributions". Humboldt-Universität zu Berlin. http://mars.wiwi.hu-berlin.de/mediawiki/slides/index.php/Comparison_of_noncentral_and_central_distributions ↩