Few commercial applications exist for bioplastics. Cost and performance remain problematic. Typical is the example of Italy, where biodegradable plastic bags are compulsory for shoppers since 2011 with the introduction of a specific law. Beyond structural materials, electroactive bioplastics are being developed that promise to carry electric current.
Bioplastics called drop-in bioplastics are chemically identical to their fossil-fuel counterparts but made from renewable resources. Examples include bio-PE, bio-PET, bio-propylene, bio-PP, and biobased nylons. Drop-in bioplastics are easy to implement technically, as existing infrastructure can be used. A dedicated bio-based pathway allows to produce products that cannot be obtained through traditional chemical reactions and can create products which have unique and superior properties, compared to fossil-based alternatives.
Starch-based bioplastics are often blended with biodegradable polyesters to produce starch/polylactic acid, starch/polycaprolactone or starch/Ecoflex (polybutylene adipate-co-terephthalate produced by BASF) blends. These blends are used for industrial applications and are also compostable. Other producers, such as Roquette, have developed other starch/polyolefin blends. These blends are not biodegradable, but have a lower carbon footprint than petroleum-based plastics used for the same applications.
Starch is cheap, abundant, and renewable.
Starch-based films (mostly used for packaging purposes) are made mainly from starch blended with thermoplastic polyesters to form biodegradable and compostable products. These films are seen specifically in consumer goods packaging of magazine wrappings and bubble films. In food packaging, these films are seen as bakery or fruit and vegetable bags. Composting bags with this films are used in selective collecting of organic waste. Further, starch-based films can be used as a paper.
Starch-based nanocomposites have been widely studied, showing improved mechanical properties, thermal stability, moisture resistance, and gas barrier properties.
Cellulose can become thermoplastic when extensively modified. An example of this is cellulose acetate, which is expensive and therefore rarely used for packaging. However, cellulosic fibers added to starches can improve mechanical properties, permeability to gas, and water resistance due to being less hydrophilic than starch.
Bioplastics can be made from proteins from different sources. For example, wheat gluten and casein show promising properties as a raw material for different biodegradable polymers.
Additionally, soy protein is being considered as another source of bioplastic. Soy proteins have been used in plastic production for over one hundred years. For example, body panels of an original Ford automobile were made of soy-based plastic.
There are difficulties with using soy protein-based plastics due to their water sensitivity and relatively high cost. Therefore, producing blends of soy protein with some already-available biodegradable polyesters improves the water sensitivity and cost.
Materials such as starch, cellulose, wood, sugar and biomass are used as a substitute for fossil fuel resources to produce bioplastics; this makes the production of bioplastics a more sustainable activity compared to conventional plastic production. The environmental impact of bioplastics is often debated, as there are many different metrics for "greenness" (e.g., water use, energy use, deforestation, biodegradation, etc.). Hence bioplastic environmental impacts are categorized into nonrenewable energy use, climate change, eutrophication and acidification. Bioplastic production significantly reduces greenhouse gas emissions and decreases non-renewable energy consumption. Firms worldwide would also be able to increase the environmental sustainability of their products by using bioplastics
Although bioplastics save more nonrenewable energy than conventional plastics and emit less greenhouse gasses compared to conventional plastics, bioplastics also have negative environmental impacts such as eutrophication and acidification. Bioplastics induce higher eutrophication potentials than conventional plastics. Biomass production during industrial farming practices causes nitrate and phosphate to filtrate into water bodies; this causes eutrophication, the process in which a body of water gains excessive richness of nutrients. Eutrophication is a threat to water resources around the world since it causes harmful algal blooms that create oxygen dead zones, killing aquatic animals. Bioplastics also increase acidification. The high increase in eutrophication and acidification caused by bioplastics is also caused by using chemical fertilizer in the cultivation of renewable raw materials to produce bioplastics.
Other environmental impacts of bioplastics include exerting lower human and terrestrial ecotoxicity and carcinogenic potentials compared to conventional plastics. However, bioplastics exert higher aquatic ecotoxicity than conventional materials. Bioplastics and other bio-based materials increase stratospheric ozone depletion compared to conventional plastics; this is a result of nitrous oxide emissions during fertilizer application during industrial farming for biomass production. Artificial fertilizers increase nitrous oxide emissions especially when the crop does not need all the nitrogen. Minor environmental impacts of bioplastics include toxicity through using pesticides on the crops used to make bioplastics. Bioplastics also cause carbon dioxide emissions from harvesting vehicles. Other minor environmental impacts include high water consumption for biomass cultivation, soil erosion, soil carbon losses and loss of biodiversity, and they are mainly are a result of land use associated with bioplastics. Land use for bioplastics production leads to lost carbon sequestration and increases the carbon costs while diverting land from its existing uses
Although bioplastics are extremely advantageous because they reduce non-renewable consumption and GHG emissions, they also negatively affect the environment through land and water consumption, using pesticide and fertilizer, eutrophication and acidification; hence one's preference for either bioplastics or conventional plastics depends on what one considers the most important environmental impact.
Another issue with bioplastics, is that some bioplastics are made from the edible parts of crops. This makes the bioplastics compete with food production because the crops that produce bioplastics can also be used to feed people. These bioplastics are called "1st generation feedstock bioplastics".
2nd generation feedstock bioplastics use non-food crops (cellulosic feedstock) or waste materials from 1st generation feedstock (e.g. waste vegetable oil). Third generation feedstock bioplastics use algae as the feedstock.
Biodegradation of any plastic is a process that happens at solid/liquid interface whereby the enzymes in the liquid phase depolymerize the solid phase. Certain types of bioplastics as well as conventional plastics containing additives are able to biodegrade. Bioplastics are able to biodegrade in different environments hence they are more acceptable than conventional plastics. Biodegradability of bioplastics occurs under various environmental conditions including soil, aquatic environments and compost. Both the structure and composition of biopolymer or bio-composite have an effect on the biodegradation process, hence changing the composition and structure might increase biodegradability. Soil and compost as environment conditions are more efficient in biodegradation due to their high microbial diversity. Composting not only biodegrades bioplastics efficiently but it also significantly reduces the emission of greenhouse gases. Biodegradability of bioplastics in compost environments can be upgraded by adding more soluble sugar and increasing temperature. Soil environments on the other hand have high diversity of microorganisms making it easier for biodegradation of bioplastics to occur. However, bioplastics in soil environments need higher temperatures and a longer time to biodegrade. Some bioplastics biodegrade more efficiently in water bodies and marine systems; however, this causes danger to marine ecosystems and freshwater. Hence it is accurate to conclude that biodegradation of bioplastics in water bodies which leads to the death of aquatic organisms and unhealthy water can be noted as one of the negative environmental impacts of bioplastics.
The concept of bioplastics dates back to the early 20th century. However, significant advancements occurred in the 1980s and 1990s when researchers began developing biodegradable plastics from natural sources. The construction industry started to take notice of bioplastics' potential in the late 2000s, driven by the global push for greener building practices.
In recent years, bioplastics have seen considerable advancements in terms of durability, cost-effectiveness, and performance. Innovations in biopolymer blends and composites have made bioplastics more suitable for construction applications, ranging from insulation to structural components.
The future of bioplastics in construction looks promising, with continued research and innovation likely to expand their applications and improve their performance. As the construction industry increasingly embraces sustainability, bioplastics are poised to play a critical role in the development of eco-friendly building materials.
Bioplastics offer a sustainable and versatile alternative to traditional construction materials, with significant environmental and economic benefits. While challenges remain, particularly in terms of cost and performance, the ongoing advancements in bioplastic technology hold the potential to transform the construction industry and contribute to a more sustainable future.
While plastics based on organic materials were manufactured by chemical companies throughout the 20th century, the first company solely focused on bioplastics—Marlborough Biopolymers—was founded in 1983. However, Marlborough and other ventures that followed failed to find commercial success, with the first such company to secure long-term financial success being the Italian company Novamont, founded in 1989.
Bioplastics remain less than one percent of all plastics manufactured worldwide. Most bioplastics do not yet save more carbon emissions than are required to manufacture them. It is estimated that replacing 250 million tons of the plastic manufactured each year with bio-based plastics would require 100 million hectares of land, or 7 percent of the arable land on Earth. And when bioplastics reach the end of their life cycle, those designed to be compostable and marketed as biodegradable are often sent to landfills due to the lack of proper composting facilities or waste sorting, where they then release methane as they break down anaerobically.
COPA (Committee of Agricultural Organisation in the European Union) and COGEGA (General Committee for the Agricultural Cooperation in the European Union) have made an assessment of the potential of bioplastics in different sectors of the European economy:
*This is not a comprehensive list. These inventions show the versatility of bioplastics and important breakthroughs. New applications and bioplastics inventions continue to occur.
The ASTM D 6002 method for determining the compostability of a plastic defined the word compostable as follows:
This definition drew much criticism because, contrary to the way the word is traditionally defined, it completely divorces the process of "composting" from the necessity of it leading to humus/compost as the end product. The only criterion this standard does describe is that a compostable plastic must look to be going away as fast as something else one has already established to be compostable under the traditional definition.
In January 2011, the ASTM withdrew standard ASTM D 6002, which had provided plastic manufacturers with the legal credibility to label a plastic as compostable. Its description is as follows:
The ASTM has yet to replace this standard.
The ASTM D6866 method has been developed to certify the biologically derived content of bioplastics. Cosmic rays colliding with the atmosphere mean that some of the carbon is the radioactive isotope carbon-14. CO2 from the atmosphere is used by plants in photosynthesis, so new plant material will contain both carbon-14 and carbon-12. Under the right conditions, and over geological timescales, the remains of living organisms can be transformed into fossil fuels. After ~100,000 years all the carbon-14 present in the original organic material will have undergone radioactive decay leaving only carbon-12. A product made from biomass will have a relatively high level of carbon-14, while a product made from petrochemicals will have no carbon-14. The percentage of renewable carbon in a material (solid or liquid) can be measured with an accelerator mass spectrometer.
The ASTM D5511-12 and ASTM D5526-12 are testing methods that comply with international standards such as the ISO DIS 15985 for the biodegradability of plastic.
"Bioplastics Market Report: Industry Analysis, Forecast 2032". Ceresana Market Research. Retrieved 2024-10-28. https://ceresana.com/en/produkt/market-study-bioplastics
Marichelvam, M. K.; Jawaid, Mohammad; Asim, Mohammad (2019). "Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials". Fibers. 7 (4): 32. doi:10.3390/fib7040032. https://doi.org/10.3390%2Ffib7040032
Shah, Manali; Rajhans, Sanjukta; Pandya, Himanshu A.; Mankad, Archana U.; Shah, Manali; Rajhans, Sanjukta; Pandya, Himanshu A.; Mankad, Archana U. (2021). "Bioplastic for future: A review then and now". World Journal of Advanced Research and Reviews. 9 (2): 056–067. doi:10.30574/wjarr.2021.9.2.0054. https://doi.org/10.30574%2Fwjarr.2021.9.2.0054
Rosenboom, Jan-Georg; Langer, Robert; Traverso, Giovanni (2022-02-20). "Bioplastics for a circular economy". Nature Reviews Materials. 7 (2): 117–137. Bibcode:2022NatRM...7..117R. doi:10.1038/s41578-021-00407-8. ISSN 2058-8437. PMC 8771173. PMID 35075395. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771173
Di Bartolo, Alberto; Infurna, Giulia; Dintcheva, Nadka Tzankova (2021). "A Review of Bioplastics and Their Adoption in the Circular Economy". Polymers. 13 (8): 1229. doi:10.3390/polym13081229. hdl:10447/538077. PMC 8069747. PMID 33920269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069747
Walker, S.; Rothman, R. (2020-07-10). "Life cycle assessment of bio-based and fossil-based plastic: A review". Journal of Cleaner Production. 261: 121158. Bibcode:2020JCPro.26121158W. doi:10.1016/j.jclepro.2020.121158. hdl:10871/121758. ISSN 0959-6526. S2CID 216414551. https://www.sciencedirect.com/science/article/pii/S0959652620312051
Pellis, Alessandro; Malinconico, Mario; Guarneri, Alice; Gardossi, Lucia (2021-01-25). "Renewable polymers and plastics: Performance beyond the green". New Biotechnology. 60: 146–158. doi:10.1016/j.nbt.2020.10.003. ISSN 1871-6784. PMID 33068793. S2CID 224321496. https://www.sciencedirect.com/science/article/pii/S1871678420301813
Thomas, Anjaly P.; Kasa, Vara Prasad; Dubey, Brajesh Kumar; Sen, Ramkrishna; Sarmah, Ajit K. (2023). "Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock". Science of the Total Environment. 904: 167243. Bibcode:2023ScTEn.90467243T. doi:10.1016/j.scitotenv.2023.167243. PMID 37741416. /wiki/Science_of_the_Total_Environment
Lackner, Maximilian (2015). "Bioplastics". Kirk-Othmer Encyclopedia of Chemical Technology: 1–41. doi:10.1002/0471238961.koe00006. ISBN 978-0-471-48494-3. 978-0-471-48494-3
Piemonte, Vincenzo (2013). "Inside the Bioplastics World: An Alternative to Petroleum-based Plastics". Sustainable Development in Chemical Engineering Innovative Technologies (1 ed.). Wiley. pp. 181–198. doi:10.1002/9781118629703.ch8. ISBN 9781119953524. 9781119953524
Fredi, Giulia; Dorigato, Andrea (2021-07-01). "Recycling of bioplastic waste: A review". Advanced Industrial and Engineering Polymer Research. 4 (3): 159–177. doi:10.1016/j.aiepr.2021.06.006. hdl:11572/336675. S2CID 237852939. https://doi.org/10.1016%2Fj.aiepr.2021.06.006
Rosenboom, Jan-Georg; Langer, Robert; Traverso, Giovanni (2022-02-20). "Bioplastics for a circular economy". Nature Reviews Materials. 7 (2): 117–137. Bibcode:2022NatRM...7..117R. doi:10.1038/s41578-021-00407-8. ISSN 2058-8437. PMC 8771173. PMID 35075395. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771173
"Bioplastics (PLA) - World Centric". worldcentric.org. Archived from the original on 2019-03-09. Retrieved 2018-07-15. https://web.archive.org/web/20190309234733/http://www.worldcentric.org/biocompostables/bioplastics
Chinthapalli, Raj; Skoczinski, Pia; Carus, Michael; Baltus, Wolfgang; de Guzman, Doris; Käb, Harald; Raschka, Achim; Ravenstijn, Jan (2019-08-01). "Biobased Building Blocks and Polymers—Global Capacities, Production and Trends, 2018–2023". Industrial Biotechnology. 15 (4): 237–241. doi:10.1089/ind.2019.29179.rch. ISSN 1550-9087. S2CID 202017074. https://www.liebertpub.com/doi/10.1089/ind.2019.29179.rch
"Bioplastics Market Report: Industry Analysis, Forecast 2032". Ceresana Market Research. Retrieved 2024-10-28. https://ceresana.com/en/produkt/market-study-bioplastics
Vert, Michel (2012). "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080. Archived from the original (PDF) on 2015-03-19. Retrieved 2013-07-17. https://web.archive.org/web/20150319032817/http://pac.iupac.org/publications/pac/pdf/2012/pdf/8402x0377.pdf
"Consiglio dei Ministri conferma la messa al bando dei sacchetti di plastica non biodegradabili - Ministero dell'Ambiente e della Tutela del Territorio e del Mare". minambiente.it. http://www.minambiente.it/comunicati/consiglio-dei-ministri-conferma-la-messa-al-bando-dei-sacchetti-di-plastica-non
Suszkiw, Jan (December 2005). "Electroactive Bioplastics Flex Their Industrial Muscle". News & Events. USDA Agricultural Research Service. Retrieved 2011-11-28. https://www.ars.usda.gov/is/AR/archive/dec05/plastic1205.htm
Chen, G.; Patel, M. (2012). "Plastics derived from biological sources: Present and future: P technical and environmental review". Chemical Reviews. 112 (4): 2082–2099. doi:10.1021/cr200162d. PMID 22188473. /wiki/Doi_(identifier)
Khwaldia, Khaoula; Elmira Arab-Tehrany; Stephane Desobry (2010). "Biopolymer Coatings on Paper Packaging Materials". Comprehensive Reviews in Food Science and Food Safety. 9 (1): 82–91. doi:10.1111/j.1541-4337.2009.00095.x. PMID 33467805. /wiki/Doi_(identifier)
"Bio-based drop-in, smart drop-in and dedicated chemicals" (PDF). Archived from the original (PDF) on 2020-11-02. Retrieved 2020-10-30. https://web.archive.org/web/20201102122527/https://www.roadtobio.eu/uploads/news/2017_October/RoadToBio_Drop-in_paper.pdf
Duurzame bioplastics op basis van hernieuwbare grondstoffen https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksinstituten/food-biobased-research/Oplossingen/Duurzame-bioplastics-op-basis-van-hernieuwbare-grondstoffen.htm
"What are bioplastics?". Archived from the original on 2022-06-05. Retrieved 2020-10-30. https://web.archive.org/web/20220605220227/http://www.bioplastics.guide/ref/bioplastics/what-are-bioplastics/
Drop in bioplastics https://bioplasticsnews.com/2018/08/28/drop-ins-bioplastics/
"Bio-based drop-in, smart drop-in and dedicated chemicals" (PDF). Archived from the original (PDF) on 2020-11-02. Retrieved 2020-10-30. https://web.archive.org/web/20201102122527/https://www.roadtobio.eu/uploads/news/2017_October/RoadToBio_Drop-in_paper.pdf
Drop in bioplastics https://bioplasticsnews.com/2018/08/28/drop-ins-bioplastics/
"Types of Bioplastic | InnovativeIndustry.net". Retrieved 2020-07-11. http://www.innovativeindustry.net/types-of-bioplastic
Make Potato Plastic!. Instructables.com (2007-07-26). Retrieved 2011-08-14. http://www.instructables.com/id/Make-Potato-Plastic!/
Liu, Hongsheng; Xie, Fengwei; Yu, Long; Chen, Ling; Li, Lin (2009-12-01). "Thermal processing of starch-based polymers". Progress in Polymer Science. 34 (12): 1348–1368. doi:10.1016/j.progpolymsci.2009.07.001. ISSN 0079-6700. http://www.sciencedirect.com/science/article/pii/S0079670009000653
Liu, Hongsheng; Xie, Fengwei; Yu, Long; Chen, Ling; Li, Lin (2009-12-01). "Thermal processing of starch-based polymers". Progress in Polymer Science. 34 (12): 1348–1368. doi:10.1016/j.progpolymsci.2009.07.001. ISSN 0079-6700. http://www.sciencedirect.com/science/article/pii/S0079670009000653
Li, Ming; Liu, Peng; Zou, Wei; Yu, Long; Xie, Fengwei; Pu, Huayin; Liu, Hongshen; Chen, Ling (2011-09-01). "Extrusion processing and characterization of edible starch films with different amylose contents". Journal of Food Engineering. 106 (1): 95–101. doi:10.1016/j.jfoodeng.2011.04.021. ISSN 0260-8774. http://www.sciencedirect.com/science/article/pii/S0260877411002196
Liu, Hongsheng; Yu, Long; Xie, Fengwei; Chen, Ling (2006-08-15). "Gelatinization of cornstarch with different amylose/amylopectin content". Carbohydrate Polymers. 65 (3): 357–363. doi:10.1016/j.carbpol.2006.01.026. ISSN 0144-8617. S2CID 85239192. http://www.sciencedirect.com/science/article/pii/S0144861706000506
Xie, Fengwei; Yu, Long; Su, Bing; Liu, Peng; Wang, Jun; Liu, Hongshen; Chen, Ling (2009-05-01). "Rheological properties of starches with different amylose/amylopectin ratios". Journal of Cereal Science. 49 (3): 371–377. doi:10.1016/j.jcs.2009.01.002. ISSN 0733-5210. http://www.sciencedirect.com/science/article/pii/S0733521009000083
Khalid, Saud; Yu, Long; Meng, Linghan; Liu, Hongsheng; Ali, Amjad; Chen, Ling (2017). "Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance". Journal of Applied Polymer Science. 134 (46): 45504. doi:10.1002/app.45504. /wiki/Doi_(identifier)
"Starch based Bioplastic Manufacturers and Suppliers". bioplasticsonline.net. Archived from the original on August 14, 2011. https://web.archive.org/web/20110814061041/http://bioplasticsonline.net/2010/06/starch-based-bioplastic-manufacturers-and-suppliers/
Sherman, Lilli Manolis (1 July 2008). "Enhancing biopolymers: additives are needed for toughness, heat resistance & processability". Plastics Technology. Archived from the original on 17 April 2016. https://www.ptonline.com/articles/enhancing-biopolymers-additives-are-needed-for-toughness-heat-resistance-processability
"BASF announces major bioplastics production expansion". Archived from the original on 2012-03-31. Retrieved 2011-08-31. https://web.archive.org/web/20120331122532/http://bioplastic-innovation.com/2008/04/22/basf-announces-major-bioplastics-production-expansion/
"Roquette, nouvel acteur sur le marché des plastiques, lance GAÏALENE®: une gamme innovante de plastique végétal". Archived from the original on 2012-03-31. Retrieved 2011-08-31. https://web.archive.org/web/20120331122551/http://bioplastic-innovation.com/2010/10/16/roquette-nouvel-acteur-sur-le-marche-des-plastiques-lance-gaialene%C2%AE-une-gamme-innovante-de-plastique-vegetal/
Avérous, Luc; Pollet, Eric (2014), "Nanobiocomposites Based on Plasticized Starch", Starch Polymers, Elsevier, pp. 211–239, doi:10.1016/b978-0-444-53730-0.00028-2, ISBN 978-0-444-53730-0 978-0-444-53730-0
Avérous, Luc; Pollet, Eric (2014), "Nanobiocomposites Based on Plasticized Starch", Starch Polymers, Elsevier, pp. 211–239, doi:10.1016/b978-0-444-53730-0.00028-2, ISBN 978-0-444-53730-0 978-0-444-53730-0
Avant, Sandra (April 2017). "Better Paper, Plastics With Starch". USDA. Archived from the original on 2018-12-14. Retrieved 2018-12-14. https://web.archive.org/web/20181214152835/https://agresearchmag.ars.usda.gov/2017/apr/starch/
Cate, Peter (January 2017). "Collaboration delivers better results". Reinforced Plastics. 61 (1): 51–54. doi:10.1016/j.repl.2016.09.002. ISSN 0034-3617. /wiki/Doi_(identifier)
Xie, Fengwei; Pollet, Eric; Halley, Peter J.; Avérous, Luc (2013-10-01). "Starch-based nano-biocomposites". Progress in Polymer Science. Progress in Bionanocomposites: from green plastics to biomedical applications. 38 (10): 1590–1628. doi:10.1016/j.progpolymsci.2013.05.002. ISSN 0079-6700. http://www.sciencedirect.com/science/article/pii/S0079670013000439
Avérous, Luc; Pollet, Eric (2014), "Nanobiocomposites Based on Plasticized Starch", Starch Polymers, Elsevier, pp. 211–239, doi:10.1016/b978-0-444-53730-0.00028-2, ISBN 978-0-444-53730-0 978-0-444-53730-0
Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H. (2009-07-27). "Biodegradable and compostable alternatives to conventional plastics". Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1526): 2127–2139. doi:10.1098/rstb.2008.0289. ISSN 0962-8436. PMC 2873018. PMID 19528060. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873018
Ralston, Brian E.; Osswald, Tim A. (February 2008). "The History of Tomorrow's Materials: Protein-Based Biopolymers". Plastics Engineering. 64 (2): 36–40. doi:10.1002/j.1941-9635.2008.tb00292.x. ISSN 0091-9578. /wiki/Doi_(identifier)
Zhang, Jinwen; Jiang, Long; Zhu, Linyong; Jane, Jay-lin; Mungara, Perminus (May 2006). "Morphology and Properties of Soy Protein and Polylactide Blends". Biomacromolecules. 7 (5): 1551–1561. doi:10.1021/bm050888p. ISSN 1525-7797. PMID 16677038. http://lib.dr.iastate.edu/fshn_ag_pubs/108
"History, Travel, Arts, Science, People, Places". smithsonianmag.com. http://www.smithsonianmag.com/science-nature/plastic.html
Künkel, Andreas; Becker, Johannes; Börger, Lars; Hamprecht, Jens; Koltzenburg, Sebastian; Loos, Robert; Schick, Michael Bernhard; Schlegel, Katharina; Sinkel, Carsten; Skupin, Gabriel; Yamamoto, Motonori (2016). "Polymers, Biodegradable". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 1–29. doi:10.1002/14356007.n21_n01.pub2. ISBN 978-3-527-30673-2. 978-3-527-30673-2
"Mirel: PHAs grades for Rigid Sheet and Thermoforming". Archived from the original on 2012-03-31. Retrieved 2011-08-31. https://web.archive.org/web/20120331122556/http://bioplastic-innovation.com/2011/06/08/mirel-phas-grades-for-rigid-sheet-and-thermoforming/
"Micromidas is using carefully constructed populations of bacteria to convert organic waste into bio-degradable plastics". Archived from the original on October 23, 2011. https://web.archive.org/web/20111023230713/http://bioplastic-innovation.com/2011/07/29/micromidas-is-using-carefully-constructed-populations-of-bacteria-to-convert-organic-waste-into-bio-degradable-plastics/
"Home". dsm.com. http://www.dsm.com/en_US/cworld/public/media/pages/press-releases/19_10_dsm_launches_bio_based_performance_materials_for_automotive_industry.jsp
Nohra, Bassam; Laure Candy; Jean-Francois Blanco; Celine Guerin; Yann Raoul; Zephirin Mouloungui (2013). "From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes" (PDF). Macromolecules. 46 (10): 3771–3792. Bibcode:2013MaMol..46.3771N. doi:10.1021/ma400197c. Archived from the original (PDF) on 2020-09-18. Retrieved 2019-12-08. https://web.archive.org/web/20200918232716/https://oatao.univ-toulouse.fr/9942/1/Nohra_9942.pdf
Fortman, David J.; Jacob P. Brutman; Christopher J. Cramer; Marc A. Hillmyer; William R. Dichtel (2015). "Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers". Journal of the American Chemical Society. 137 (44): 14019–14022. Bibcode:2015JAChS.13714019F. doi:10.1021/jacs.5b08084. PMID 26495769. /wiki/Christopher_J._Cramer
Meier, Michael A. R.; Metzger, Jürgen O.; Schubert, Ulrich S. (2007-10-02). "Plant oil renewable resources as green alternatives in polymer science". Chemical Society Reviews. 36 (11): 1788–802. doi:10.1039/b703294c. ISSN 1460-4744. PMID 18213986. /wiki/Doi_(identifier)
Floros, Michael; Hojabri, Leila; Abraham, Eldho; Jose, Jesmy; Thomas, Sabu; Pothan, Laly; Leao, Alcides Lopes; Narine, Suresh (2012). "Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers". Polymer Degradation and Stability. 97 (10): 1970–1978. doi:10.1016/j.polymdegradstab.2012.02.016. /wiki/Doi_(identifier)
Pillai, Prasanth K. S.; Floros, Michael C.; Narine, Suresh S. (2017-07-03). "Elastomers from Renewable Metathesized Palm Oil Polyols". ACS Sustainable Chemistry & Engineering. 5 (7): 5793–5799. doi:10.1021/acssuschemeng.7b00517. /wiki/Doi_(identifier)
Can, E.; Küsefoğlu, S.; Wool, R. P. (2001-07-05). "Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates". Journal of Applied Polymer Science. 81 (1): 69–77. doi:10.1002/app.1414. ISSN 1097-4628. /wiki/Doi_(identifier)
Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Habas, J.-P.; Robin, J.-J. (2011-06-01). "A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material" (PDF). Journal of Polymer Science Part A: Polymer Chemistry. 49 (11): 2434–2444. Bibcode:2011JPoSA..49.2434S. doi:10.1002/pola.24674. ISSN 1099-0518. S2CID 78089334. https://hal.archives-ouvertes.fr/hal-00587993/file/JPOLSCI.pdf
Meier, Michael A. R. (2009-07-21). "Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science". Macromolecular Chemistry and Physics. 210 (13–14): 1073–1079. doi:10.1002/macp.200900168. ISSN 1521-3935. https://doi.org/10.1002%2Fmacp.200900168
Mata, Teresa M.; Martins, António A.; Caetano, Nidia. S. (2010). "Microalgae for biodiesel production and other applications: A review". Renewable and Sustainable Energy Reviews. 14 (1): 217–232. Bibcode:2010RSERv..14..217M. doi:10.1016/j.rser.2009.07.020. hdl:10400.22/10059. S2CID 15481966. /wiki/Bibcode_(identifier)
Lamanna, Leonardo; Corigliano, Gabriele; Narayanan, Athira; Villani, Stefania; Friuli, Marco; Chietera, Francesco P.; Stanca, Benedetta Di Chiara; Giannotti, Laura; Siculella, Luisa; Colella, Riccardo; Catarinucci, Luca; Athanassiou, Athanassia; Cataldi, Pietro; Demitri, Christian; Caironi, Mario (2024-10-15). "Beyond Plastic: Oleogel as gel-state biodegradable thermoplastics". Chemical Engineering Journal. 498: 154988. Bibcode:2024ChEnJ.49854988L. doi:10.1016/j.cej.2024.154988. hdl:10281/512761. ISSN 1385-8947. https://doi.org/10.1016%2Fj.cej.2024.154988
Gironi, F.; Piemonte, V. (2011). "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 33 (21): 1949–1959. doi:10.1080/15567030903436830. /wiki/Doi_(identifier)
Atiwesh, Ghada; Mikhael, Abanoub; Parrish, Christopher C.; Banoub, Joseph; Le, Tuyet-Anh T. (2021). "Environmental impact of bioplastic use: A review". Heliyon. 7 (9): e07918. Bibcode:2021Heliy...707918A. doi:10.1016/j.heliyon.2021.e07918. PMC 8424513. PMID 34522811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424513
Yates, Madeleine R.; Barlow, Claire Y. (2013). "Life cycle assessments of biodegradable, commercial biopolymers—A critical review". Resources, Conservation and Recycling. 78: 54–66. Bibcode:2013RCR....78...54Y. doi:10.1016/j.resconrec.2013.06.010. /wiki/Bibcode_(identifier)
"Are biodegradable plastics better for the environment?". Axion. 6 February 2018. Retrieved 2018-12-14. https://axiongroup.co.uk/news/biodegradable-plastics-better-environment/
Miles, Lindsay (22 March 2018). "Biodegradable Plastic: Is It Really Eco-Friendly?". Retrieved 2018-12-14. https://treadingmyownpath.com/2018/03/22/biodegradable-plastic-is-it-really-eco-friendly/
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Gironi, F.; Piemonte, V. (2011). "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 33 (21): 1949–1959. doi:10.1080/15567030903436830. /wiki/Doi_(identifier)
Brockhaus, Sebastian; Petersen, Moritz; Kersten, Wolfgang (2016). "A crossroads for bioplastics: Exploring product developers' challenges to move beyond petroleum-based plastics". Journal of Cleaner Production. 127: 84–95. Bibcode:2016JCPro.127...84B. doi:10.1016/j.jclepro.2016.04.003. /wiki/Bibcode_(identifier)
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Sinha, E., et al. "Eutrophication Will Increase during the 21st Century as a Result of Precipitation Changes." Science, vol. 357, no. July, 2017, pp. 405–08.
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Gironi, F.; Piemonte, V. (2011). "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 33 (21): 1949–1959. doi:10.1080/15567030903436830. /wiki/Doi_(identifier)
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Rosas, Francisco; Babcock, Bruce A.; Hayes, Dermot J. (2015). "Nitrous oxide emission reductions from cutting excessive nitrogen fertilizer applications". Climatic Change. 132 (2): 353–367. Bibcode:2015ClCh..132..353R. doi:10.1007/s10584-015-1426-y. hdl:10.1007/s10584-015-1426-y. /wiki/Bibcode_(identifier)
Gironi, F.; Piemonte, V. (2011). "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 33 (21): 1949–1959. doi:10.1080/15567030903436830. /wiki/Doi_(identifier)
Gironi, F.; Piemonte, V. (2011). "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 33 (21): 1949–1959. doi:10.1080/15567030903436830. /wiki/Doi_(identifier)
Weiss, Martin; Haufe, Juliane; Carus, Michael; Brandão, Miguel; Bringezu, Stefan; Hermann, Barbara; Patel, Martin K. (2012). "A Review of the Environmental Impacts of Biobased Materials". Journal of Industrial Ecology. 16. doi:10.1111/j.1530-9290.2012.00468.x. https://archive-ouverte.unige.ch/unige:42352
Piemonte, Vincenzo; Gironi, Fausto (2011). "Land-use change emissions: How green are the bioplastics?". Environmental Progress & Sustainable Energy. 30 (4): 685–691. Bibcode:2011EPSE...30..685P. doi:10.1002/ep.10518. /wiki/Bibcode_(identifier)
Gironi, F.; Piemonte, V. (2011). "Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 33 (21): 1949–1959. doi:10.1080/15567030903436830. /wiki/Doi_(identifier)
Cho, Renee. "The truth about bioplastics". phys.org. Retrieved 31 October 2021. https://phys.org/news/2017-12-truth-bioplastics.html
Bioplastic Feedstock 1st, 2nd and 3rd Generations https://bioplasticsnews.com/2018/09/12/bioplastic-feedstock-1st-2nd-and-3rd-generations/
Degli-Innocenti, Francesco (2014). "Biodegradation of plastics and ecotoxicity testing: When should it be done". Frontiers in Microbiology. 5: 475. doi:10.3389/fmicb.2014.00475. PMC 4155774. PMID 25250023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155774
Gómez, Eddie F.; Michel, Frederick C. (2013). "Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation". Polymer Degradation and Stability. 98 (12): 2583–2591. doi:10.1016/j.polymdegradstab.2013.09.018. /wiki/Doi_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
Emadian, S. Mehdi; Onay, Turgut T.; Demirel, Burak (2017). "Biodegradation of bioplastics in natural environments". Waste Management. 59: 526–536. Bibcode:2017WaMan..59..526E. doi:10.1016/j.wasman.2016.10.006. PMID 27742230. /wiki/Bibcode_(identifier)
"Biodegradable bioplastics - Insurance against waste or risky shortcut?". https://www.ecbf.vc/biodegradable-bioplastics
"Environmental Benefits of Plastic Formwork". 2 September 2021. https://plasticconcreteformwork.com/environmental-benefits-of-plastic-formwork-in-concrete-construction/
Narancic, Tanja; Cerrone, Federico; Beagan, Niall; O’Connor, Kevin E. (2020). "Recent Advances in Bioplastics: Application and Biodegradation". Polymers. 12 (4): 920. doi:10.3390/polym12040920. PMC 7240402. PMID 32326661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240402
Razza, Francesco; Innocenti, Francesco Degli (2012). "Bioplastics from renewable resources: the benefits of biodegradability". Asia-Pacific Journal of Chemical Engineering. 7 (S3): S301 – S309. doi:10.1002/apj.1648. /wiki/Asia-Pacific_Journal_of_Chemical_Engineering
"Bioplastics Market Size USD 19.2 Billion by 2030". https://www.vantagemarketresearch.com/industry-report/bioplastics-market-2274?trk=article-ssr-frontend-pulse_little-text-block
"Bioplastics and conventional plastics: Comparative analysis". 26 June 2023. https://primebiopol.com/bioplasticos-y-plasticos-convencionales-un-analisis-comparativo/?lang=en
"Can Bioplastics Replace Traditional Materials in Building? -". 2 September 2024. Archived from the original on 8 July 2024. Retrieved 8 July 2024. https://web.archive.org/web/20240708213339/https://sameerabuildingconstruction.com/can-bioplastics-replace-traditional-materials-in-building/
Sidek, Izathul Shafina; Draman, Sarifah Fauziah Syed; Abdullah, Siti Rozaimah Sheikh; Anuar, Nornizar (2019-10-01). "CURRENT DEVELOPMENT ON BIOPLASTICS AND ITS FUTURE PROSPECTS: AN INTRODUCTORY REVIEW" (PDF). INWASCON Technology Magazine: 03–08. doi:10.26480/itechmag.01.2019.03.08. http://itechmag.org/paper/volume%201/03-08.pdf
Ekawardhani, Y. A.; Pasaribu, C. Y.; Rohmah, A. N.; Salsabila, O. (2021). "Bioplastic Technology as Packaging Innovation". IOP Conference Series: Materials Science and Engineering. 1158 (1): 012008. Bibcode:2021MS&E.1158a2008E. doi:10.1088/1757-899X/1158/1/012008. https://doi.org/10.1088%2F1757-899X%2F1158%2F1%2F012008
Barrett, Axel (5 September 2018). "The History and Most Important Innovations of Bioplastics". Bioplastics News. https://bioplasticsnews.com/2018/07/05/history-of-bioplastics/
"Ready to Grow: The Biodegradable Polymers Market". Plastics Engineering. 72 (3): 1–4. March 2016. doi:10.1002/j.1941-9635.2016.tb01489.x. ISSN 0091-9578. /wiki/Doi_(identifier)
Darby, Debra (August 2012). "Bioplastics Industry Report". BioCycle. 53 (8): 40–44. https://www.biocycle.net/2012/08/15/bioplastics-industry-report/
Rujnić-Sokele, Maja; Pilipović, Ana (September 2017). "Challenges and Opportunities of Biodegradable Plastics: A Mini Review". Waste Management & Research. 35 (2): 132–140. Bibcode:2017WMR....35..132R. doi:10.1177/0734242x16683272. PMID 28064843. S2CID 23782848. /wiki/Bibcode_(identifier)
Dolfen, Julia. "Bioplastics- Opportunities and Challenges." US Composting Council. 2012 Compostable Plastics Symposium, Jan. 2012, Austin, Texas, https://compostingcouncil.org/admin/wp-content/uploads/2012/01/Dolfen.pdf Archived 2018-09-26 at the Wayback Machine https://compostingcouncil.org/admin/wp-content/uploads/2012/01/Dolfen.pdf
White, J. L. (December 1998). "Fourth in a Series: Pioneers of Polymer Processing Alexander Parkes". International Polymer Processing. 13 (4): 326. doi:10.3139/217.980326. ISSN 0930-777X. S2CID 137545344. /wiki/Doi_(identifier)
Raschka, Achim; Carus, Michael; Piotrowski, Stephan (2013-10-04), "Renewable Raw Materials and Feedstock for Bioplastics", Bio-Based Plastics, John Wiley & Sons Ltd, pp. 331–345, doi:10.1002/9781118676646.ch13, ISBN 978-1-118-67664-6 978-1-118-67664-6
Raschka, Achim; Carus, Michael; Piotrowski, Stephan (2013-10-04), "Renewable Raw Materials and Feedstock for Bioplastics", Bio-Based Plastics, John Wiley & Sons Ltd, pp. 331–345, doi:10.1002/9781118676646.ch13, ISBN 978-1-118-67664-6 978-1-118-67664-6
Raschka, Achim; Carus, Michael; Piotrowski, Stephan (2013-10-04), "Renewable Raw Materials and Feedstock for Bioplastics", Bio-Based Plastics, John Wiley & Sons Ltd, pp. 331–345, doi:10.1002/9781118676646.ch13, ISBN 978-1-118-67664-6 978-1-118-67664-6
Raschka, Achim; Carus, Michael; Piotrowski, Stephan (2013-10-04), "Renewable Raw Materials and Feedstock for Bioplastics", Bio-Based Plastics, John Wiley & Sons Ltd, pp. 331–345, doi:10.1002/9781118676646.ch13, ISBN 978-1-118-67664-6 978-1-118-67664-6
"Soybean Car - The Henry Ford". www.thehenryford.org. Retrieved 2020-12-09. https://www.thehenryford.org/collections-and-research/digital-resources/popular-topics/soy-bean-car/
"A Brief History of Plastic". The Brooklyn Rail. May 2005. Retrieved 2018-09-27. https://brooklynrail.org/2005/05/express/a-brief-history-of-plastic
d-2016-154. 2016. doi:10.18411/d-2016-154. ISBN 978-5-91243-072-5. 978-5-91243-072-5
"A Brief History of Plastic". The Brooklyn Rail. May 2005. Retrieved 2018-09-27. https://brooklynrail.org/2005/05/express/a-brief-history-of-plastic
"New fibre could make stronger parts". Reinforced Plastics. 39 (5): 17. May 1995. doi:10.1016/0034-3617(95)91746-2. ISSN 0034-3617. /wiki/Doi_(identifier)
"Novamont". Bioplastics News. 2013-12-30. Retrieved 2018-09-27. https://bioplasticsnews.com/bioplastics-companies/novamont/
Lörcks, Jürgen (January 1998). "Properties and applications of compostable starch-based plastic material". Polymer Degradation and Stability. 59 (1–3): 245–249. doi:10.1016/s0141-3910(97)00168-7. ISSN 0141-3910. /wiki/Doi_(identifier)
Poirier, Yves; Dennis, Douglas; Klomparens, Karen; Nawrath, Christiane; Somerville, Chris (December 1992). "Perspectives on the production of polyhydroxyalkanoates in plants". FEMS Microbiology Letters. 103 (2–4): 237–246. doi:10.1111/j.1574-6968.1992.tb05843.x. ISSN 0378-1097. https://doi.org/10.1111%2Fj.1574-6968.1992.tb05843.x
"Monsanto finds buyer for oil and gas assets". Chemical & Engineering News. 63 (48): 5. 1985-12-02. doi:10.1021/cen-v063n048.p005a. ISSN 0009-2347. /wiki/Doi_(identifier)
"The History and Most Important Innovations of Bioplastics". Bioplastics News. 2018-07-05. Retrieved 2018-09-27. https://bioplasticsnews.com/2018/07/05/history-of-bioplastics/
Pennisi, Elizabeth (1992-05-16). "Natureworks". Science News. 141 (20): 328–331. doi:10.2307/3976489. ISSN 0036-8423. JSTOR 3976489. /wiki/Elizabeth_Pennisi
DiGregorio, Barry E. (January 2009). "Biobased Performance Bioplastic: Mirel". Chemistry & Biology. 16 (1): 1–2. doi:10.1016/j.chembiol.2009.01.001. ISSN 1074-5521. PMID 19171300. /wiki/Doi_(identifier)
Rajam, Manchikatla V.; Yogindran, Sneha (2018), "Engineering Insect Resistance in Tomato by Transgenic Approaches", Sustainable Management of Arthropod Pests of Tomato, Elsevier, pp. 237–252, doi:10.1016/b978-0-12-802441-6.00010-3, ISBN 978-0-12-802441-6 978-0-12-802441-6
"Nanotube technology gains US patent". Reinforced Plastics. 48 (10): 17. November 2004. doi:10.1016/s0034-3617(04)00461-8. ISSN 0034-3617. /wiki/Doi_(identifier)
Campbell, Phil G.; Burgess, James E.; Weiss, Lee E.; Smith, Jason (18 June 2015). "Methods and Apparatus for Manufacturing Plasma Based Plastics and Bioplastics Produced Therefrom". https://patents.google.com/patent/US20150165093A1/en
Bayer, Ilker S.; Guzman-Puyol, Susana; Heredia-Guerrero, José Alejandro; Ceseracciu, Luca; Pignatelli, Francesca; Ruffilli, Roberta; Cingolani, Roberto; Athanassiou, Athanassia (2014-07-15). "Direct Transformation of Edible Vegetable Waste into Bioplastics". Macromolecules. 47 (15): 5135–5143. Bibcode:2014MaMol..47.5135B. doi:10.1021/ma5008557. ISSN 0024-9297. https://www.openaccessrepository.it/record/74866
Sharif Hossain, A.B.M.; Ibrahim, Nasir A.; AlEissa, Mohammed Saad (September 2016). "Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass". Data in Brief. 8: 286–294. Bibcode:2016DIB.....8..286S. doi:10.1016/j.dib.2016.05.029. ISSN 2352-3409. PMC 4906129. PMID 27331103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906129
Brodin, Malin; Vallejos, María; Opedal, Mihaela Tanase; Area, María Cristina; Chinga-Carrasco, Gary (September 2017). "Lignocellulosics as sustainable resources for production of bioplastics – A review". Journal of Cleaner Production. 162: 646–664. Bibcode:2017JCPro.162..646B. doi:10.1016/j.jclepro.2017.05.209. hdl:20.500.12219/4447. ISSN 0959-6526. /wiki/Bibcode_(identifier)
"26. Biofuels and bioplastics". Industrial Chemistry. 2015. pp. 141–148. doi:10.1515/9783110351705.141. ISBN 978-3-11-035169-9. 978-3-11-035169-9
Tran TH, Nguyen HL, Hwang DS, Lee JY, Cha HG, Koo JM, Hwang SY, Park J, Oh DX (2019). "Five different chitin nanomaterials from identical source with different advantageous functions and performances". Carbohydrate Polymers. 205. Elsevier Science B.V., Amsterdam.: 392–400. doi:10.1016/j.carbpol.2018.10.089. ISSN 0144-8617. PMID 30446120. S2CID 53569630. /wiki/Doi_(identifier)
"Compostable.info". http://www.compostable.info/compostable.htm
"ASTM D6002 - 96(2002)e1 Standard Guide for Assessing the Compostability of Environmentally Degradable Plastics (Withdrawn 2011)". astm.org. Archived from the original on 2019-12-21. Retrieved 2012-09-05. https://web.archive.org/web/20191221192326/https://www.astm.org/Standards/D6002.htm
"ASTM D6866 - 11 Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis". Astm.org. Retrieved 2011-08-14. http://www.astm.org/Standards/D6866.htm
"NNFCC Newsletter – Issue 16. Understanding Bio-based Content — NNFCC". Nnfcc.co.uk. 2010-02-24. Retrieved 2011-08-14. http://www.nnfcc.co.uk/publications/nnfcc-newsletter-issue-16-understanding-bio-based-content
"Braskem". Braskem. Retrieved 2011-08-14. http://www.braskem.com.br/site/portal_braskem/en/sala_de_imprensa/sala_de_imprensa_detalhes_6062.aspx