Consider the autonomous Itō stochastic differential equation: d X t = a ( X t ) d t + b ( X t ) d W t {\displaystyle \mathrm {d} X_{t}=a(X_{t})\,\mathrm {d} t+b(X_{t})\,\mathrm {d} W_{t}} with initial condition X 0 = x 0 {\displaystyle X_{0}=x_{0}} , where W t {\displaystyle W_{t}} denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [ 0 , T ] {\displaystyle [0,T]} . Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows:
Note that when b ′ ( Y n ) = 0 {\displaystyle b'(Y_{n})=0} (i.e. the diffusion term does not depend on X t {\displaystyle X_{t}} ) this method is equivalent to the Euler–Maruyama method.
The Milstein scheme has both weak and strong order of convergence Δ t {\displaystyle \Delta t} which is superior to the Euler–Maruyama method, which in turn has the same weak order of convergence Δ t {\displaystyle \Delta t} but inferior strong order of convergence Δ t {\displaystyle {\sqrt {\Delta t}}} .3
For this derivation, we will only look at geometric Brownian motion (GBM), the stochastic differential equation of which is given by: d X t = μ X d t + σ X d W t {\displaystyle \mathrm {d} X_{t}=\mu X\mathrm {d} t+\sigma XdW_{t}} with real constants μ {\displaystyle \mu } and σ {\displaystyle \sigma } . Using Itō's lemma we get: d ln X t = ( μ − 1 2 σ 2 ) d t + σ d W t {\displaystyle \mathrm {d} \ln X_{t}=\left(\mu -{\frac {1}{2}}\sigma ^{2}\right)\mathrm {d} t+\sigma \mathrm {d} W_{t}}
Thus, the solution to the GBM SDE is: X t + Δ t = X t exp { ∫ t t + Δ t ( μ − 1 2 σ 2 ) d t + ∫ t t + Δ t σ d W u } ≈ X t ( 1 + μ Δ t − 1 2 σ 2 Δ t + σ Δ W t + 1 2 σ 2 ( Δ W t ) 2 ) = X t + a ( X t ) Δ t + b ( X t ) Δ W t + 1 2 b ( X t ) b ′ ( X t ) ( ( Δ W t ) 2 − Δ t ) {\displaystyle {\begin{aligned}X_{t+\Delta t}&=X_{t}\exp \left\{\int _{t}^{t+\Delta t}\left(\mu -{\frac {1}{2}}\sigma ^{2}\right)\mathrm {d} t+\int _{t}^{t+\Delta t}\sigma \mathrm {d} W_{u}\right\}\\&\approx X_{t}\left(1+\mu \Delta t-{\frac {1}{2}}\sigma ^{2}\Delta t+\sigma \Delta W_{t}+{\frac {1}{2}}\sigma ^{2}(\Delta W_{t})^{2}\right)\\&=X_{t}+a(X_{t})\Delta t+b(X_{t})\Delta W_{t}+{\frac {1}{2}}b(X_{t})b'(X_{t})((\Delta W_{t})^{2}-\Delta t)\end{aligned}}} where a ( x ) = μ x , b ( x ) = σ x {\displaystyle a(x)=\mu x,~b(x)=\sigma x}
The numerical solution is presented in the graphic for three different trajectories.4
The following Python code implements the Milstein method and uses it to solve the SDE describing geometric Brownian motion defined by { d Y t = μ Y d t + σ Y d W t Y 0 = Y init {\displaystyle {\begin{cases}dY_{t}=\mu Y\,{\mathrm {d} }t+\sigma Y\,{\mathrm {d} }W_{t}\\Y_{0}=Y_{\text{init}}\end{cases}}}
Mil'shtein, G. N. (1974). "Approximate integration of stochastic differential equations". Teoriya Veroyatnostei i ee Primeneniya (in Russian). 19 (3): 583–588. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvp&paperid=2929&option_lang=eng ↩
Mil’shtein, G. N. (1975). "Approximate Integration of Stochastic Differential Equations". Theory of Probability & Its Applications. 19 (3): 557–000. doi:10.1137/1119062. /wiki/Doi_(identifier) ↩
V. Mackevičius, Introduction to Stochastic Analysis, Wiley 2011 ↩
Umberto Picchini, SDE Toolbox: simulation and estimation of stochastic differential equations with Matlab. http://sdetoolbox.sourceforge.net/ http://sdetoolbox.sourceforge.net/ ↩