Let ( M , g ) {\displaystyle (M,g)} be a connected and smooth Riemannian manifold. Then the following statements are equivalent:2
Furthermore, any one of the above implies that given any two points p , q ∈ M , {\displaystyle p,q\in M,} there exists a length minimizing geodesic connecting these two points (geodesics are in general critical points for the length functional, and may or may not be minima).
In the Hopf–Rinow theorem, the first characterization of completeness deals purely with the topology of the manifold and the boundedness of various sets; the second deals with the existence of minimizers to a certain problem in the calculus of variations (namely minimization of the length functional); the third deals with the nature of solutions to a certain system of ordinary differential equations.
Hopf, H.; Rinow, W. (1931). "Ueber den Begriff der vollständigen differentialgeometrischen Fläche". Commentarii Mathematici Helvetici. 3 (1): 209–225. doi:10.1007/BF01601813. /wiki/Commentarii_Mathematici_Helvetici ↩
do Carmo 1992, Chapter 7; Gallot, Hulin & Lafontaine 2004, Section 2.C.5; Jost 2017, Section 1.7; Kobayashi & Nomizu 1963, Section IV.4; Lang 1999, Section VIII.6; O'Neill 1983, Theorem 5.21 and Proposition 5.22; Petersen 2016, Section 5.7.1. - do Carmo, Manfredo Perdigão (1992). Riemannian geometry. Mathematics: Theory & Applications. Translated from the second Portuguese edition by Francis Flaherty. Boston, MA: Birkhäuser Boston, Inc. ISBN 0-8176-3490-8. MR 1138207. Zbl 0752.53001. https://mathscinet.ams.org/mathscinet-getitem?mr=1138207 ↩
Bridson & Haefliger 1999, Proposition I.3.7; Gromov 1999, Section 1.B. - Bridson, Martin R.; Haefliger, André (1999). Metric spaces of non-positive curvature. Grundlehren der mathematischen Wissenschaften. Vol. 319. Berlin: Springer-Verlag. doi:10.1007/978-3-662-12494-9. ISBN 3-540-64324-9. MR 1744486. Zbl 0988.53001. https://doi.org/10.1007%2F978-3-662-12494-9 ↩
Burago, Burago & Ivanov 2001, Section 2.5.3. - Burago, Dmitri; Burago, Yuri; Ivanov, Sergei (2001). A course in metric geometry. Graduate Studies in Mathematics. Vol. 33. Providence, RI: American Mathematical Society. doi:10.1090/gsm/033. ISBN 0-8218-2129-6. MR 1835418. Zbl 0981.51016. (Erratum: [1]) https://doi.org/10.1090%2Fgsm%2F033 ↩
Lang 1999, pp. 226–227. - Lang, Serge (1999). Fundamentals of differential geometry. Graduate Texts in Mathematics. Vol. 191. New York: Springer-Verlag. doi:10.1007/978-1-4612-0541-8. ISBN 0-387-98593-X. MR 1666820. Zbl 0932.53001. https://doi.org/10.1007%2F978-1-4612-0541-8 ↩
Atkin, C. J. (1975), "The Hopf–Rinow theorem is false in infinite dimensions", The Bulletin of the London Mathematical Society, 7 (3): 261–266, doi:10.1112/blms/7.3.261, MR 0400283 /wiki/The_Bulletin_of_the_London_Mathematical_Society ↩
Gallot, Hulin & Lafontaine 2004, Section 2.D.4; O'Neill 1983, p. 193. - Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004). Riemannian geometry. Universitext (Third ed.). Springer-Verlag. doi:10.1007/978-3-642-18855-8. ISBN 3-540-20493-8. MR 2088027. Zbl 1068.53001. https://doi.org/10.1007%2F978-3-642-18855-8 ↩