Colman, Andrew M. A Dictionary of Psychology (3 ed.). Oxford University Press. ISBN 9780191726828. The illusion was first presented by the US psychologist Roger N(ewland) Shepard (born 1929) in his book Mind Sights: Original Visual Illusions, Ambiguities, and Other Anomalies (1990, p. 48). Shepard commented that 'any knowledge or understanding of the illusion we may gain at the intellectual level remains virtually powerless to diminish the magnitude of the illusion' (p. 128). 9780191726828
Chouinard, Philippe. "The Psychology of Seeing in Autism". La Trobe University. Archived from the original on February 12, 2019. Retrieved February 11, 2019. [The Shepard tables] illusion is one of the strongest optical illusions that exists, on average the apparent size difference is 20–25%. Our preliminary work and earlier work performed by others (Mitchell, Mottron, Soulieres, & Ropar, 2010) reveal how susceptibility to this particular illusion is diminished considerably in persons with an ASD. https://web.archive.org/web/20190212130818/https://www.latrobe.edu.au/psychology/research/research-areas/cognitive-and-developmental-psychology/the-psychology-of-seeing-in-autism
Colman, Andrew M. A Dictionary of Psychology (3 ed.). Oxford University Press. ISBN 9780191726828. The illusion was first presented by the US psychologist Roger N(ewland) Shepard (born 1929) in his book Mind Sights: Original Visual Illusions, Ambiguities, and Other Anomalies (1990, p. 48). Shepard commented that 'any knowledge or understanding of the illusion we may gain at the intellectual level remains virtually powerless to diminish the magnitude of the illusion' (p. 128). 9780191726828
Shapiro, Arthur Gilman; Todorovic, Dejan (2012). The Oxford Compendium of Visual Illusions. Oxford University Press. p. 239. ISBN 978-0199794607. For example, the famous Shepard tabletop illusion (Shepard, 1981) is more convincing when the planes are embedded in box shapes than when they are presented in isolation. 978-0199794607
Wilson, Robert Andrew; Keil, Frank C (2001). The MIT Encyclopedia of the Cognitive Sciences. MIT Press. pp. 385–386. ISBN 978-0262731447. size and shape constancy subjectively expand the near-far dimension along the line of sight to compensate for geometrical foreshortening. 978-0262731447
Wilson, Robert Andrew; Keil, Frank C (2001). The MIT Encyclopedia of the Cognitive Sciences. MIT Press. pp. 385–386. ISBN 978-0262731447. size and shape constancy subjectively expand the near-far dimension along the line of sight to compensate for geometrical foreshortening. 978-0262731447
Shepard, RN (1990). Mind Sights: Original visual illusions, ambiguities, and other anomalies, with a commentary on the play of mind in perception and art. W.H. Freeman and Company. p. 128. ISBN 978-0716721345. Because the inference about orientation, depth, and length are provided automatically by underlying neuronal machinery, any knowledge or understanding of the illusion we may gain at the intellectual level remains virtually powerless to diminish the magnitude of the illusion. 978-0716721345
Chouinard, Philippe. "The Psychology of Seeing in Autism". La Trobe University. Archived from the original on February 12, 2019. Retrieved February 11, 2019. [The Shepard tables] illusion is one of the strongest optical illusions that exists, on average the apparent size difference is 20–25%. Our preliminary work and earlier work performed by others (Mitchell, Mottron, Soulieres, & Ropar, 2010) reveal how susceptibility to this particular illusion is diminished considerably in persons with an ASD. https://web.archive.org/web/20190212130818/https://www.latrobe.edu.au/psychology/research/research-areas/cognitive-and-developmental-psychology/the-psychology-of-seeing-in-autism
Landry, O.; Royals, K. (May 9, 2018). Illusion Strength and Associated Eye Movements in Children with Autism Spectrum Disorder While Viewing Shepard and Ebbinghaus Illusion Displays. INSAR 2018 Annual Meeting. Rotterdam: International Society for Autism Research. The children with ASD (M = .14, SD = .10) were less susceptible to the Shepard's tabletops illusion than the typically developing children (M = .20, SD = .05), t (28) = 2.41, p = .043. https://insar.confex.com/insar/2018/webprogram/Paper28297.html
Colman, Andrew M. A Dictionary of Psychology (3 ed.). Oxford University Press. ISBN 9780191726828. The illusion was first presented by the US psychologist Roger N(ewland) Shepard (born 1929) in his book Mind Sights: Original Visual Illusions, Ambiguities, and Other Anomalies (1990, p. 48). Shepard commented that 'any knowledge or understanding of the illusion we may gain at the intellectual level remains virtually powerless to diminish the magnitude of the illusion' (p. 128). 9780191726828
Martinez-Conde, Susana; Macknik, Stephen (2017). Champions of Illusion: The Science Behind Mind-Boggling Images and Mystifying Brain Puzzles. Farrar, Straus and Giroux. p. 46. ISBN 978-0374120405. Photocopy this page and then ..cut around the trapezoid shapes…The effect is a version of the classic Shepard Tabletop illusion. 978-0374120405
Phillips, David (October 14, 2009). "Shepard's tables – What's up?". OpticalIllusion.net. Retrieved February 10, 2019. Recently Lydia Maniatis pointed out a puzzling aspect of the illusion, in her prize-winning entry for the Illusion of the Year Competition. https://www.opticalillusion.net/optical-illusions/shepards-tables-whats-up/
Maniatis, Lydia (2009). "Another turn: a variant on the Shepard tabletop illusion". Best Illusion of the Year Contest. Retrieved February 10, 2019. The three pink- and blue-colored parallelograms are the same. All blue lines are equal in length; all pink lines are also equal. Box B is simply Box C rotated counterclockwise. But the three parallelograms look different, and boxes B and C look different. http://illusionoftheyear.com/2009/05/another-turn-a-variant-on-the-shepard-tabletop-illusion/
Tyler, Christopher W (May 19, 2011). "Paradoxical perception of surfaces in the Shepard tabletop illusion". i-Perception. 3 (3): 137–141. doi:10.1068/i0422. PMC 3485780. PMID 23145230. One of the most profound visual illusions .. is the Shepard tabletop illusion, in which the perspective view of two identical parallelograms as tabletops at different orientations gives a completely different sense of the aspect ratio of the implied rectangles in the two cases (Shepard 1990). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485780