"Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature. 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4. /wiki/Doi_(identifier)
Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89 (1): 015502. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502. Archived from the original on 2023-06-13. Retrieved 2023-01-24. https://web.archive.org/web/20230613193026/https://authors.library.caltech.edu/44641/
Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1 – 030003-442. doi:10.1088/1674-1137/41/3/030003.
http://nuclearmasses.org/resources_folder/Wang_2017_Chinese_Phys_C_41_030003.pdf
Status of ββ-decay in Xenon, Roland Lüscher, accessed online September 17, 2007. Archived September 27, 2007, at the Wayback Machine http://www.shef.ac.uk/physics/bus2006/talks/luscher_roland.pdf
Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of 134Xe, 126Xe, and 124Xe with large scale Xe detectors". Journal of Physics G. 41 (11): 115105–1–115105–12. arXiv:1409.8308. Bibcode:2014JPhG...41k5105B. doi:10.1088/0954-3899/41/11/115105. S2CID 116264328. /wiki/Journal_of_Physics_G
Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502). arXiv:2312.15632. doi:10.1103/PhysRevLett.132.152502. /wiki/ArXiv_(identifier)
Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic 100Sn" (PDF). Physical Review Letters. 121 (18): 182501. Bibcode:2018PhRvL.121r2501A. doi:10.1103/PhysRevLett.121.182501. PMID 30444390. https://www.pure.ed.ac.uk/ws/files/77942573/PhysRevLett.121.pdf
Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth". Science. 174 (4016): 1334–1336. Bibcode:1971Sci...174.1334B. doi:10.1126/science.174.4016.1334. PMID 17801897. S2CID 28159702. /wiki/Science_(journal)
Ardoin, L.; Broadley, M.W.; Almayrac, M.; Avice, G.; Byrne, D.J.; Tarantola, A.; Lepland, A.; Saito, T.; Komiya, T.; Shibuya, T.; Marty, B. (2022). "The end of the isotopic evolution of atmospheric xenon". Geochemical Perspectives Letters. 20: 43–47. Bibcode:2022GChPL..20...43A. doi:10.7185/geochemlet.2207. S2CID 247399987. https://doi.org/10.7185%2Fgeochemlet.2207
mXe – Excited nuclear isomer. /wiki/Nuclear_isomer
Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)
( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Modes of decay:
EC:Electron captureIT:Isomeric transitionn:Neutron emission /wiki/Electron_capture
Bold symbol as daughter – Daughter product is stable.
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
( ) spin value – Indicates spin with weak assignment arguments.
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Heaviest known isotope with equal numbers of protons and neutrons
Primordial radionuclide /wiki/Primordial_nuclide
"Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature. 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4. /wiki/Doi_(identifier)
Suspected of undergoing DEC decay to 126Te
Used in a method of radiodating groundwater and to infer certain events in the Solar System's history /wiki/Iodine-129#Applications
Fission product /wiki/Fission_product
Fission product /wiki/Fission_product
Fission product /wiki/Fission_product
Has medical uses /wiki/Nuclear_medicine
Fission product /wiki/Fission_product
Theoretically capable of undergoing β−β− decay to 134Ba with a half-life over 2.8×1022 years[11]
Most powerful known neutron absorber, produced in nuclear power plants as a decay product of 135I, itself a decay product of 135Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become 136Xe; see iodine pit for more information /wiki/Neutron_absorber
Primordial radionuclide /wiki/Primordial_nuclide
David Nield (26 Apr 2019). "A Dark Matter Detector Just Recorded One of The Rarest Events Known to Science". https://www.sciencealert.com/a-dark-matter-detector-just-detected-one-of-the-rarest-events-ever-in-science
Hennecke, Edward W.; Manuel, O. K.; Sabu, Dwarka D. (1975). "Double beta decay of Te 128". Physical Review C. 11 (4): 1378–1384. doi:10.1103/PhysRevC.11.1378. http://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=2240&context=chem_facwork
Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133". Journal of Nuclear Medicine. 19 (10): 1187–1188. PMID 722337. /wiki/PMID_(identifier)
Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP". Kaku Igaku. 24 (11): 1617–1623. PMID 3502279. /wiki/PMID_(identifier)
Effluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29. https://www.ncbi.nlm.nih.gov/books/NBK201991/
Chart of the Nuclides 13th Edition
Effluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29. https://www.ncbi.nlm.nih.gov/books/NBK201991/