Heavy traffic approximations are typically stated for the process X(t) describing the number of customers in the system at time t. They are arrived at by considering the model under the limiting values of some model parameters and therefore for the result to be finite the model must be rescaled by a factor n, denoted3: 490
and the limit of this process is considered as n → ∞.
There are three classes of regime under which such approximations are generally considered.
Theorem 1. 14 Consider a sequence of G/G/1 queues indexed by j {\displaystyle j} . For queue j {\displaystyle j} let T j {\displaystyle T_{j}} denote the random inter-arrival time, S j {\displaystyle S_{j}} denote the random service time; let ρ j = λ j μ j {\displaystyle \rho _{j}={\frac {\lambda _{j}}{\mu _{j}}}} denote the traffic intensity with 1 λ j = E ( T j ) {\displaystyle {\frac {1}{\lambda _{j}}}=E(T_{j})} and 1 μ j = E ( S j ) {\displaystyle {\frac {1}{\mu _{j}}}=E(S_{j})} ; let W q , j {\displaystyle W_{q,j}} denote the waiting time in queue for a customer in steady state; Let α j = − E [ S j − T j ] {\displaystyle \alpha _{j}=-E[S_{j}-T_{j}]} and β j 2 = var [ S j − T j ] ; {\displaystyle \beta _{j}^{2}=\operatorname {var} [S_{j}-T_{j}];}
Suppose that T j → d T {\displaystyle T_{j}{\xrightarrow {d}}T} , S j → d S {\displaystyle S_{j}{\xrightarrow {d}}S} , and ρ j → 1 {\displaystyle \rho _{j}\rightarrow 1} . then
provided that:
(a) Var [ S − T ] > 0 {\displaystyle \operatorname {Var} [S-T]>0}
(b) for some δ > 0 {\displaystyle \delta >0} , E [ S j 2 + δ ] {\displaystyle E[S_{j}^{2+\delta }]} and E [ T j 2 + δ ] {\displaystyle E[T_{j}^{2+\delta }]} are both less than some constant C {\displaystyle C} for all j {\displaystyle j} .
Let U ( n ) = S ( n ) − T ( n ) {\displaystyle U^{(n)}=S^{(n)}-T^{(n)}} be the difference between the nth service time and the nth inter-arrival time; Let W q ( n ) {\displaystyle W_{q}^{(n)}} be the waiting time in queue of the nth customer;
Then by definition:
After recursive calculation, we have:
Let P ( k ) = ∑ i = 1 k U ( n − i ) {\displaystyle P^{(k)}=\sum _{i=1}^{k}U^{(n-i)}} , with U ( i ) {\displaystyle U^{(i)}} are i.i.d; Define α = − E [ U ( i ) ] {\displaystyle \alpha =-E[U^{(i)}]} and β 2 = var [ U ( i ) ] {\displaystyle \beta ^{2}=\operatorname {var} [U^{(i)}]} ;
Then we have
we get W q ( ∞ ) = sup k ≥ 0 P ( k ) {\displaystyle W_{q}^{(\infty )}=\sup _{k\geq 0}P^{(k)}} by taking limit over n {\displaystyle n} .
Thus the waiting time in queue of the nth customer W q ( n ) {\displaystyle W_{q}^{(n)}} is the supremum of a random walk with a negative drift.
Random walk can be approximated by a Brownian motion when the jump sizes approach 0 and the times between the jump approach 0.
We have P ( 0 ) = 0 {\displaystyle P^{(0)}=0} and P ( k ) {\displaystyle P^{(k)}} has independent and stationary increments. When the traffic intensity ρ {\displaystyle \rho } approaches 1 and k {\displaystyle k} tends to ∞ {\displaystyle \infty } , we have P ( t ) ∼ N ( − α t , β 2 t ) {\displaystyle P^{(t)}\ \sim \ \mathbb {N} (-\alpha t,\beta ^{2}t)} after replaced k {\displaystyle k} with continuous value t {\displaystyle t} according to functional central limit theorem.15: 110 Thus the waiting time in queue of the n {\displaystyle n} th customer can be approximated by the supremum of a Brownian motion with a negative drift.
Theorem 2.16: 130 Let X {\displaystyle X} be a Brownian motion with drift μ {\displaystyle \mu } and standard deviation σ {\displaystyle \sigma } starting at the origin, and let M t = sup 0 ≤ s ≤ t X ( s ) {\displaystyle M_{t}=\sup _{0\leq s\leq t}X(s)}
if μ ≤ 0 {\displaystyle \mu \leq 0}
otherwise
Thus, the heavy traffic limit theorem (Theorem 1) is heuristically argued. Formal proofs usually follow a different approach which involve characteristic functions.1718
Consider an M/G/1 queue with arrival rate λ {\displaystyle \lambda } , the mean of the service time E [ S ] = 1 μ {\displaystyle E[S]={\frac {1}{\mu }}} , and the variance of the service time var [ S ] = σ B 2 {\displaystyle \operatorname {var} [S]=\sigma _{B}^{2}} . What is average waiting time in queue in the steady state?
The exact average waiting time in queue in steady state is given by:
The corresponding heavy traffic approximation:
The relative error of the heavy traffic approximation:
Thus when ρ → 1 {\displaystyle \rho \rightarrow 1} , we have :
Halfin, S.; Whitt, W. (1981). "Heavy-Traffic Limits for Queues with Many Exponential Servers" (PDF). Operations Research. 29 (3): 567. doi:10.1287/opre.29.3.567. /wiki/Ward_Whitt ↩
Kingman, J. F. C. (October 1961). "The single server queue in heavy traffic". Mathematical Proceedings of the Cambridge Philosophical Society. 57 (4): 902. Bibcode:1961PCPS...57..902K. doi:10.1017/S0305004100036094. JSTOR 2984229. /wiki/John_Kingman ↩
Gautam, Natarajan (2012). Analysis of Queues: Methods and Applications. CRC Press. ISBN 9781439806586. 9781439806586 ↩
Kingman, J. F. C. (1962). "On Queues in Heavy Traffic". Journal of the Royal Statistical Society. Series B (Methodological). 24 (2): 383–392. doi:10.1111/j.2517-6161.1962.tb00465.x. JSTOR 2984229. /wiki/John_Kingman ↩
Iglehart, Donald L.; Ward, Whitt (1970). "Multiple Channel Queues in Heavy Traffic. II: Sequences, Networks, and Batches" (PDF). Advances in Applied Probability. 2 (2): 355–369. doi:10.2307/1426324. JSTOR 1426324. Retrieved 30 Nov 2012. /wiki/Ward_Whitt ↩
Köllerström, Julian (1974). "Heavy Traffic Theory for Queues with Several Servers. I". Journal of Applied Probability. 11 (3): 544–552. doi:10.2307/3212698. JSTOR 3212698. /wiki/Doi_(identifier) ↩
Iglehart, Donald L. (1965). "Limiting Diffusion Approximations for the Many Server Queue and the Repairman Problem". Journal of Applied Probability. 2 (2): 429–441. doi:10.2307/3212203. JSTOR 3212203. /wiki/Doi_(identifier) ↩
Borovkov, A. A. (1967). "On limit laws for service processes in multi-channel systems". Siberian Mathematical Journal. 8 (5): 746–763. doi:10.1007/BF01040651. /wiki/Doi_(identifier) ↩
Iglehart, Donald L. (1973). "Weak Convergence in Queueing Theory". Advances in Applied Probability. 5 (3): 570–594. doi:10.2307/1425835. JSTOR 1425835. /wiki/Doi_(identifier) ↩
Puhalskii, A. A.; Reiman, M. I. (2000). "The multiclass GI/PH/N queue in the Halfin-Whitt regime". Advances in Applied Probability. 32 (2): 564. doi:10.1239/aap/1013540179. /wiki/Doi_(identifier) ↩
Reed, J. (2009). "The G/GI/N queue in the Halfin–Whitt regime". The Annals of Applied Probability. 19 (6): 2211–2269. arXiv:0912.2837. doi:10.1214/09-AAP609. /wiki/ArXiv_(identifier) ↩
Whitt, W. (2004). "Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues with Abandonments" (PDF). Management Science. 50 (10): 1449–1461. CiteSeerX 10.1.1.139.750. doi:10.1287/mnsc.1040.0279. JSTOR 30046186. /wiki/Ward_Whitt ↩
Gross, D.; Shortie, J. F.; Thompson, J. M.; Harris, C. M. (2013). "Bounds and Approximations". Fundamentals of Queueing Theory. pp. 329–368. doi:10.1002/9781118625651.ch7. ISBN 9781118625651. 9781118625651 ↩
Chen, H.; Yao, D. D. (2001). "Technical Desiderata". Fundamentals of Queueing Networks. Stochastic Modelling and Applied Probability. Vol. 46. pp. 97–124. doi:10.1007/978-1-4757-5301-1_5. ISBN 978-1-4419-2896-2. 978-1-4419-2896-2 ↩
Chen, H.; Yao, D. D. (2001). "Single-Station Queues". Fundamentals of Queueing Networks. Stochastic Modelling and Applied Probability. Vol. 46. pp. 125–158. doi:10.1007/978-1-4757-5301-1_6. ISBN 978-1-4419-2896-2. 978-1-4419-2896-2 ↩
Asmussen, S. R. (2003). "Steady-State Properties of GI/G/1". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 266–301. doi:10.1007/0-387-21525-5_10. ISBN 978-0-387-00211-8. 978-0-387-00211-8 ↩