At lower temperatures the behavior of cerium is complicated by the slow rates of transformation. Transformation temperatures are subject to substantial hysteresis and values quoted here are approximate. Upon cooling below −15 °C, γ-cerium starts to change to β-cerium, but the transformation involves a volume increase and, as more β forms, the internal stresses build up and suppress further transformation. Cooling below approximately −160 °C will start formation of α-cerium but this is only from remaining γ-cerium. β-cerium does not significantly transform to α-cerium except in the presence of stress or deformation. At atmospheric pressure, liquid cerium is more dense than its solid form at the melting
point.
Naturally occurring cerium is made up of four isotopes: 136Ce (0.19%), 138Ce (0.25%), 140Ce (88.4%), and 142Ce (11.1%). All four are observationally stable, though the light isotopes 136Ce and 138Ce are theoretically expected to undergo double electron capture to isotopes of barium, and the heaviest isotope 142Ce is expected to undergo double beta decay to 142Nd or alpha decay to 138Ba. Thus, 140Ce is the only theoretically stable isotope. None of these decay modes have yet been observed, though the double beta decay of 136Ce, 138Ce, and 142Ce have been experimentally searched for. The current experimental limits for their half-lives are:
136Ce: >3.8×1016 y
138Ce: >5.7×1016 y
142Ce: >5.0×1016 y
The rarity of the proton-rich 136Ce and 138Ce is explained by the fact that they cannot be made in the most common processes of stellar nucleosynthesis for elements beyond iron, the s-process (slow neutron capture) and the r-process (rapid neutron capture). This is so because they are bypassed by the reaction flow of the s-process, and the r-process nuclides are blocked from decaying to them by more neutron-rich stable nuclides. Such nuclei are called p-nuclei, and their origin is not yet well understood: some speculated mechanisms for their formation include proton capture as well as photodisintegration. 140Ce is the most common isotope of cerium, as it can be produced in both the s- and r-processes, while 142Ce can only be produced in the r-process. Another reason for the abundance of 140Ce is that it is a magic nucleus, having a closed neutron shell (it has 82 neutrons), and hence it has a very low cross section towards further neutron capture. Although its proton number of 58 is not magic, it is granted additional stability, as its eight additional protons past the magic number 50 enter and complete the 1g7/2 proton orbital. The abundances of the cerium isotopes may differ very slightly in natural sources, because 138Ce and 140Ce are the daughters of the long-lived primordial radionuclides 138La and 144Nd, respectively.
Cerium exists in two main oxidation states, Ce(III) and Ce(IV). This pair of adjacent oxidation states dominates several aspects of the chemistry of this element. Cerium(IV) aqueous solutions may be prepared by reacting cerium(III) solutions with the strong oxidizing agents peroxodisulfate or bismuthate. The value of E⦵(Ce4+/Ce3+) varies widely depending on conditions due to the relative ease of complexation and hydrolysis with various anions, although +1.72 V is representative. Cerium is the only lanthanide which has important aqueous and coordination chemistry in the +4 oxidation state.
Cerium forms all four trihalides CeX3 (X = F, Cl, Br, I) usually by reaction of the oxides with the hydrogen halides. The anhydrous halides are pale-colored, paramagnetic, hygroscopic solids. Upon hydration, the trihalides convert to complexes containing aquo complexes [Ce(H2O)8-9]3+. Unlike most lanthanides, Ce forms a tetrafluoride, a white solid. It also forms a bronze-colored diiodide, which has metallic properties. Aside from the binary halide phases, a number of anionic halide complexes are known. The fluoride gives the Ce(IV) derivatives CeF4−8 and CeF2−6. The chloride gives the orange CeCl2−6.
Cerium is the most abundant of all the lanthanides and the 25th most abundant element, making up 68 ppm of the Earth's crust. This value is the same of copper, and cerium is even more abundant than common metals such as lead (13 ppm) and tin (2.1 ppm). Thus, despite its position as one of the so-called rare-earth metals, cerium is actually not rare at all. Cerium content in the soil varies between 2 and 150 ppm, with an average of 50 ppm; seawater contains 1.5 parts per trillion of cerium. Cerium occurs in various minerals, but the most important commercial sources are the minerals of the monazite and bastnäsite groups, where it makes up about half of the lanthanide content. Monazite-(Ce) is the most common representative of the monazites, with "-Ce" being the Levinson suffix informing on the dominance of the particular REE element representative. Also the cerium-dominant bastnäsite-(Ce) is the most important of the bastnäsites. Cerium is the easiest lanthanide to extract from its minerals because it is the only one that can reach a stable +4 oxidation state in aqueous solution. Because of the decreased solubility of cerium in the +4 oxidation state, cerium is sometimes depleted from rocks relative to the other rare-earth elements and is incorporated into zircon, since Ce4+ and Zr4+ have the same charge and similar ionic radii. In extreme cases, cerium(IV) can form its own minerals separated from the other rare-earth elements, such as cerianite-(Ce) and (Ce,Th)O2.
Cerium has two main applications, both of which use CeO2. The industrial application of ceria is for polishing, especially chemical-mechanical planarization (CMP). In its other main application, CeO2 is used to decolorize glass. It functions by converting green-tinted ferrous impurities to nearly colorless ferric oxides. Ceria has also been used as a substitute for its radioactive congener thoria, for example in the manufacture of electrodes used in gas tungsten arc welding, where cerium as an alloying element improves arc stability and ease of starting while decreasing burn-off.
This resulted in commercial success for von Welsbach and his invention, and created great demand for thorium. Its production resulted in a large amount of lanthanides being simultaneously extracted as by-products. Applications were soon found for them, especially in the pyrophoric alloy known as "mischmetal" composed of 50% cerium, 25% lanthanum, and the remainder being the other lanthanides, that is used widely for lighter flints. Usually iron is added to form the alloy ferrocerium, also invented by von Welsbach. Due to the chemical similarities of the lanthanides, chemical separation is not usually required for their applications, such as the addition of mischmetal to steel as an inclusion modifier to improve mechanical properties, or as catalysts for the cracking of petroleum. This property of cerium saved the life of writer Primo Levi at the Auschwitz concentration camp, when he found a supply of ferrocerium alloy and bartered it for food.
Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0486-5. 0-8493-0486-5
Greenwood & Earnshaw 1997, pp. 1232–5. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Jørgensen, Christian (1973). "The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics)". Angewandte Chemie International Edition. 12 (1): 12–19. doi:10.1002/anie.197300121. /wiki/Doi_(identifier)
Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, pp. 1703–5, ISBN 0-12-352651-5 0-12-352651-5
Wills, J. M.; Eriksson, Olle; Boring, A. M. (1991-10-14). "Theoretical studies of the high pressure phases in cerium". Physical Review Letters. 67 (16): 2215–2218. Bibcode:1991PhRvL..67.2215W. doi:10.1103/PhysRevLett.67.2215. ISSN 0031-9007. PMID 10044368. https://link.aps.org/doi/10.1103/PhysRevLett.67.2215
Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev (17 September 2014). "Cerium; Crystal Structure and Position in The Periodic Table". Scientific Reports. 4: 6398. Bibcode:2014NatSR...4.6398J. doi:10.1038/srep06398. PMC 4165975. PMID 25227991. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165975
Greenwood & Earnshaw 1997, pp. 1244–8. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Gray, Theodore (2010). The Elements. Black Dog & Leventhal Pub. ISBN 978-1-57912-895-1. 978-1-57912-895-1
"Chemical reactions of Cerium". Webelements. Retrieved 9 July 2016. https://www.webelements.com/cerium/chemistry.html
Koskimaki, D. C.; Gschneidner, K. A.; Panousis, N. T. (1974). "Preparation of single phase β and α cerium samples for low temperature measurements". Journal of Crystal Growth. 22 (3): 225–229. Bibcode:1974JCrGr..22..225K. doi:10.1016/0022-0248(74)90098-0. /wiki/Bibcode_(identifier)
Koskimaki, D. C.; Gschneidner, K. A.; Panousis, N. T. (1974). "Preparation of single phase β and α cerium samples for low temperature measurements". Journal of Crystal Growth. 22 (3): 225–229. Bibcode:1974JCrGr..22..225K. doi:10.1016/0022-0248(74)90098-0. /wiki/Bibcode_(identifier)
Koskimaki, D. C.; Gschneidner, K. A.; Panousis, N. T. (1974). "Preparation of single phase β and α cerium samples for low temperature measurements". Journal of Crystal Growth. 22 (3): 225–229. Bibcode:1974JCrGr..22..225K. doi:10.1016/0022-0248(74)90098-0. /wiki/Bibcode_(identifier)
Koskimaki, D. C.; Gschneidner, K. A.; Panousis, N. T. (1974). "Preparation of single phase β and α cerium samples for low temperature measurements". Journal of Crystal Growth. 22 (3): 225–229. Bibcode:1974JCrGr..22..225K. doi:10.1016/0022-0248(74)90098-0. /wiki/Bibcode_(identifier)
Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0486-5. 0-8493-0486-5
Stassis, C.; Gould, T.; McMasters, O.; Gschneidner, K.; Nicklow, R. (1979). "Lattice and spin dynamics of γ-Ce". Physical Review B. 19 (11): 5746–5753. Bibcode:1979PhRvB..19.5746S. doi:10.1103/PhysRevB.19.5746. /wiki/Bibcode_(identifier)
Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 199–200. ISBN 978-0-07-049439-8. 978-0-07-049439-8
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf
Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098. /wiki/European_Physical_Journal_A
Cameron, A. G. W. (1973). "Abundance of the Elements in the Solar System" (PDF). Space Science Reviews. 15 (1): 121–146. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440. S2CID 120201972. https://pubs.giss.nasa.gov/docs/1973/1973_Cameron_ca06310p.pdf
Cameron, A. G. W. (1973). "Abundance of the Elements in the Solar System" (PDF). Space Science Reviews. 15 (1): 121–146. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440. S2CID 120201972. https://pubs.giss.nasa.gov/docs/1973/1973_Cameron_ca06310p.pdf
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf
Greenwood & Earnshaw 1997, pp. 1244–8. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Greenwood & Earnshaw 1997, pp. 1240–2. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Greenwood & Earnshaw 1997, pp. 1244–8. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Greenwood & Earnshaw 1997, pp. 1238–9. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Greenwood & Earnshaw 1997, pp. 1238–9. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Nair, Vijay; Deepthi, Ani (2007). "Cerium(IV) Ammonium Nitrate: A Versatile Single-Electron Oxidant". Chemical Reviews. 107 (5): 1862–1891. doi:10.1021/cr068408n. PMID 17432919. /wiki/Doi_(identifier)
Sridharan, Vellaisamy; Menéndez, J. Carlos (2010). "Cerium(IV) Ammonium Nitrate as a Catalyst in Organic Synthesis". Chemical Reviews. 110 (6): 3805–3849. doi:10.1021/cr100004p. PMID 20359233. /wiki/Doi_(identifier)
Sridharan, Vellaisamy; Menéndez, J. Carlos (2010). "Cerium(IV) Ammonium Nitrate as a Catalyst in Organic Synthesis". Chemical Reviews. 110 (6): 3805–3849. doi:10.1021/cr100004p. PMID 20359233. /wiki/Doi_(identifier)
Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0486-5. 0-8493-0486-5
Gupta, C. K. & Krishnamurthy, Nagaiyar (2004). Extractive metallurgy of rare earths. CRC Press. p. 30. ISBN 978-0-415-33340-5. 978-0-415-33340-5
Gschneidner K.A., ed. (2006). "Chapter 229: Applications of tetravalent cerium compounds". Handbook on the Physics and Chemistry of Rare Earths, Volume 36. The Netherlands: Elsevier. pp. 286–288. ISBN 978-0-444-52142-2. 978-0-444-52142-2
Sroor, Farid M.A.; Edelmann, Frank T. (2012). "Lanthanides: Tetravalent Inorganic". Encyclopedia of Inorganic and Bioinorganic Chemistry. doi:10.1002/9781119951438.eibc2033. ISBN 978-1-119-95143-8. 978-1-119-95143-8
McGill, Ian. "Rare Earth Elements". Ullmann's Encyclopedia of Industrial Chemistry. Vol. 31. Weinheim: Wiley-VCH. p. 190. doi:10.1002/14356007.a22_607. ISBN 978-3-527-30673-2. 978-3-527-30673-2
Greenwood & Earnshaw 1997, pp. 1244–8. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
B. P. Belousov (1959). "Периодически действующая реакция и ее механизм" [Periodically acting reaction and its mechanism]. Сборник рефератов по радиационной медицине (in Russian). 147: 145.
Greenwood & Earnshaw 1997, pp. 1248–9. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Schelter, Eric J. (20 March 2013). "Cerium under the lens". Nature Chemistry. 5 (4): 348. Bibcode:2013NatCh...5..348S. doi:10.1038/nchem.1602. PMID 23511425. https://doi.org/10.1038%2Fnchem.1602
Mikhail N. Bochkarev (2004). "Molecular compounds of "new" divalent lanthanides". Coordination Chemistry Reviews. 248 (9–10): 835–851. doi:10.1016/j.ccr.2004.04.004. /wiki/Doi_(identifier)
M. Cristina Cassani; Yurii K. Gun'ko; Peter B. Hitchcock; Alexander G. Hulkes; Alexei V. Khvostov; Michael F. Lappert; Andrey V. Protchenko (2002). "Aspects of non-classical organolanthanide chemistry". Journal of Organometallic Chemistry. 647 (1–2): 71–83. doi:10.1016/s0022-328x(01)01484-x. /wiki/Doi_(identifier)
"Visual Elements: Cerium". London: Royal Society of Chemistry. 1999–2012. Retrieved December 31, 2009. http://www.rsc.org/periodic-table/element/58/cerium
"Visual Elements: Cerium". London: Royal Society of Chemistry. 1999–2012. Retrieved December 31, 2009. http://www.rsc.org/periodic-table/element/58/cerium
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
"Visual Elements: Cerium". London: Royal Society of Chemistry. 1999–2012. Retrieved December 31, 2009. http://www.rsc.org/periodic-table/element/58/cerium
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education. https://archive.org/details/discoveryoftheel002045mbp
Weeks, Mary Elvira (1932). "The Discovery of the Elements: XI. Some Elements Isolated with the Aid of Potassium and Sodium: Zirconium, Titanium, Cerium and Thorium". The Journal of Chemical Education. 9 (7): 1231–1243. Bibcode:1932JChEd...9.1231W. doi:10.1021/ed009p1231. /wiki/Mary_Elvira_Weeks
Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Beginnings" (PDF). The Hexagon: 41–45. Retrieved 30 December 2019. http://www.chem.unt.edu/~jimm/REDISCOVERY%207-09-2018/Hexagon%20Articles/rare%20earths%20I.pdf
Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Confusing Years" (PDF). The Hexagon: 72–77. Retrieved 30 December 2019. http://www.chem.unt.edu/~jimm/REDISCOVERY%207-09-2018/Hexagon%20Articles/rare%20earths%20II.pdf
Hirai, Shinji; Shimakage, Kazuyoshi; Saitou, Yasushi; Nishimura, Toshiyuki; Uemura, Yoichiro; Mitomo, Mamoru; Brewer, Leo (2005-01-21). "Synthesis and Sintering of Cerium(III) Sulfide Powders". Journal of the American Ceramic Society. 81 (1): 145–151. doi:10.1111/j.1151-2916.1998.tb02306.x. http://doi.wiley.com/10.1111/j.1151-2916.1998.tb02306.x
Hadden, Gavin, ed. (1946). "Chapter 11 - Ames Project". Manhattan District History. Vol. 4. Washington, D.C.: United States Army Corps of Engineers. https://www.osti.gov/opennet/manhattan_district
Hadden, Gavin, ed. (1946). "Chapter 11 - Ames Project". Manhattan District History. Vol. 4. Washington, D.C.: United States Army Corps of Engineers. https://www.osti.gov/opennet/manhattan_district
Emsley, John (2003). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. ISBN 978-0-19-850340-8. 978-0-19-850340-8
Greenwood & Earnshaw 1997, pp. 1294. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
Burke, Ernst A.J. (2008). "The use of suffixes in mineral names" (PDF). Elements. 4 (2): 96. Archived from the original (PDF) on 19 December 2019. Retrieved 7 December 2019. https://web.archive.org/web/20191219014458/http://elementsmagazine.org/archives/e4_2/e4_2_dep_mineralmatters.pdf
"Monazite-(Ce): Mineral information, data and localities". www.mindat.org. https://www.mindat.org/min-2751.html
"CNMNC". nrmima.nrm.se. Archived from the original on 2019-08-10. Retrieved 2018-10-06. https://web.archive.org/web/20190810195707/http://nrmima.nrm.se//
"Bastnäsite-(Ce): Mineral information, data and localities". www.mindat.org. https://www.mindat.org/min-560.html
Burke, Ernst A.J. (2008). "The use of suffixes in mineral names" (PDF). Elements. 4 (2): 96. Archived from the original (PDF) on 19 December 2019. Retrieved 7 December 2019. https://web.archive.org/web/20191219014458/http://elementsmagazine.org/archives/e4_2/e4_2_dep_mineralmatters.pdf
Greenwood & Earnshaw 1997, pp. 1229–1232. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Thomas, J. B.; Bodnar, R. J.; Shimizu, N.; Chesner, C. A. (2003). "Melt inclusions in zircon". Reviews in Mineralogy and Geochemistry. 53 (1): 63–87. Bibcode:2003RvMG...53...63T. doi:10.2113/0530063. /wiki/Bibcode_(identifier)
"Cerianite-(Ce): Mineral information, data and localities". www.mindat.org. https://www.mindat.org/min-929.html
"CNMNC". nrmima.nrm.se. Archived from the original on 2019-08-10. Retrieved 2018-10-06. https://web.archive.org/web/20190810195707/http://nrmima.nrm.se//
Burke, Ernst A.J. (2008). "The use of suffixes in mineral names" (PDF). Elements. 4 (2): 96. Archived from the original (PDF) on 19 December 2019. Retrieved 7 December 2019. https://web.archive.org/web/20191219014458/http://elementsmagazine.org/archives/e4_2/e4_2_dep_mineralmatters.pdf
Graham, A. R. (1955). "Cerianite CeO2: a new rare-earth oxide mineral". American Mineralogist. 40: 560–564.
Greenwood & Earnshaw 1997, pp. 1229–1232. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 199–200. ISBN 978-0-07-049439-8. 978-0-07-049439-8
Greenwood & Earnshaw 1997, pp. 1229–1232. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Klaus Reinhardt; Herwig Winkler (2000). "Cerium Mischmetal, Cerium Alloys, and Cerium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a06_139. ISBN 978-3-527-30673-2.. 978-3-527-30673-2
AWS D10.11M/D10.11 - An American National Standard - Guide for Root Pass Welding of Pipe Without Backing. American Welding Society. 2007.
Lewes, Vivian Byam (1911). "Lighting" . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 16 (11th ed.). Cambridge University Press. p. 656. https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Lighting
Wickleder, Mathias S.; Fourest, Blandine; Dorhout, Peter K. (2006). "Thorium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (PDF). Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 52–160. doi:10.1007/1-4020-3598-5_3. ISBN 978-1-4020-3555-5. Archived from the original (PDF) on 2016-03-07. 978-1-4020-3555-5
Greenwood & Earnshaw 1997, pp. 1228. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Greenwood & Earnshaw 1997, pp. 1228. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Klaus Reinhardt and Herwig Winkler in "Cerium Mischmetal, Cerium Alloys, and Cerium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_139 /wiki/Doi_(identifier)
Greenwood & Earnshaw 1997, pp. 1229–1232. - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
Wilkinson, Tom (6 November 2009). "Book Of A Lifetime: The Periodic Table, By Primo Levi". The Independent. Retrieved 25 October 2016. https://www.independent.co.uk/arts-entertainment/books/reviews/book-of-a-lifetime-the-periodic-table-by-primo-levi-1815315.html
Gleń, Marta; Grzmil, Barbara; Sreńscek-Nazzal, Joanna; Kic, Bogumił (2011-04-01). "Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide". Chemical Papers. 65 (2): 203–212. doi:10.2478/s11696-010-0103-x. ISSN 1336-9075. S2CID 94458692. /wiki/Doi_(identifier)
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
Cerium dioxide Archived 2013-03-02 at the Wayback Machine. nanopartikel.info (2011-02-02) http://www.nanopartikel.info/cms/lang/en/Wissensbasis/Cerdioxid
Trovarelli, Alessandro (2002). Catalysis by ceria and related materials. Imperial College Press. pp. 6–11. ISBN 978-1-86094-299-0. 978-1-86094-299-0
Lu, Chung-Hsin; Hong, Hsin-Cheng; Jagannathan, R. (2002-01-01). "Sol–gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders". Journal of Materials Chemistry. 12 (8): 2525–2530. doi:10.1039/B200776M. ISSN 1364-5501. https://pubs.rsc.org/en/content/articlelanding/2002/jm/b200776m
Hirai, Shinji; Shimakage, Kazuyoshi; Saitou, Yasushi; Nishimura, Toshiyuki; Uemura, Yoichiro; Mitomo, Mamoru; Brewer, Leo (2005-01-21). "Synthesis and Sintering of Cerium(III) Sulfide Powders". Journal of the American Ceramic Society. 81 (1): 145–151. doi:10.1111/j.1151-2916.1998.tb02306.x. http://doi.wiley.com/10.1111/j.1151-2916.1998.tb02306.x
Hadden, Gavin, ed. (1946). "Chapter 11 - Ames Project". Manhattan District History. Vol. 4. Washington, D.C.: United States Army Corps of Engineers. https://www.osti.gov/opennet/manhattan_district
Hirai, Shinji; Shimakage, Kazuyoshi; Saitou, Yasushi; Nishimura, Toshiyuki; Uemura, Yoichiro; Mitomo, Mamoru; Brewer, Leo (2005-01-21). "Synthesis and Sintering of Cerium(III) Sulfide Powders". Journal of the American Ceramic Society. 81 (1): 145–151. doi:10.1111/j.1151-2916.1998.tb02306.x. http://doi.wiley.com/10.1111/j.1151-2916.1998.tb02306.x
Sims, Zachary (2016). "Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development". JOM. 68 (7): 1940–1947. Bibcode:2016JOM....68g1940S. doi:10.1007/s11837-016-1943-9. OSTI 1346625. S2CID 138835874. /wiki/Bibcode_(identifier)
Leary, J. A.; Mullins, L. J. (1964-11-01). PREPARATION OF TERNARY PLUTONIUM ALLOYS FOR CORE TEST FACILITY PROGRAM (Report). Los Alamos National Lab. (LANL), Los Alamos, NM (United States). OSTI 4650650. https://www.osti.gov/biblio/4650650
Bleiwas, D.I. (2013). Potential for Recovery of Cerium Contained in Automotive Catalytic Converters. Reston, Va.: U.S. Department of the Interior, U.S. Geological Survey. https://purl.fdlp.gov/GPO/gpo36871
"Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing". Argonne National Laboratory. Archived from the original on 2015-09-07. Retrieved 2014-06-02. https://web.archive.org/web/20150907191148/http://www.transportation.anl.gov/engines/cerium-oxide_catalyst.html
Pol, Arjan; Barends, Thomas R. M.; Dietl, Andreas; Khadem, Ahmad F.; Eygensteyn, Jelle; Jetten, Mike S. M.; Op Den Camp, Huub J. M. (2013). "Rare earth metals are essential for methanotrophic life in volcanic mudpots" (PDF). Environmental Microbiology. 16 (1): 255–64. doi:10.1111/1462-2920.12249. PMID 24034209. https://repository.ubn.ru.nl//bitstream/handle/2066/128108/128108.pdf
Kang, L.; Shen, Z.; Jin, C. (April 2000). "Neodymium cations Nd3+ were transported to the interior of Euglena gracilis 277". Chin. Sci. Bull. 45 (7): 585–592. Bibcode:2000ChSBu..45..585K. doi:10.1007/BF02886032. /wiki/Bibcode_(identifier)
Hawthorne, Joseph; De la Torre Roche, Roberto; Xing, Baoshan; Newman, Lee A.; Ma, Xingmao; Majumdar, Sanghamitra; Gardea-Torresdey, Jorge; White, Jason C. (2014-11-18). "Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain". Environmental Science & Technology. 48 (22): 13102–13109. Bibcode:2014EnST...4813102H. doi:10.1021/es503792f. ISSN 0013-936X. PMID 25340623. https://pubs.acs.org/doi/10.1021/es503792f
Majumdar, Sanghamitra; Trujillo-Reyes, Jesica; Hernandez-Viezcas, Jose A.; White, Jason C.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L. (2016-07-05). "Cerium Biomagnification in a Terrestrial Food Chain: Influence of Particle Size and Growth Stage". Environmental Science & Technology. 50 (13): 6782–6792. Bibcode:2016EnST...50.6782M. doi:10.1021/acs.est.5b04784. ISSN 0013-936X. PMID 26690677. https://pubs.acs.org/doi/10.1021/acs.est.5b04784
Gupta, Govind Sharan; Shanker, Rishi; Dhawan, Alok; Kumar, Ashutosh (2017), Ranjan, Shivendu; Dasgupta, Nandita; Lichtfouse, Eric (eds.), "Impact of Nanomaterials on the Aquatic Food Chain", Nanoscience in Food and Agriculture 5, Sustainable Agriculture Reviews, vol. 26, Cham: Springer International Publishing, pp. 309–333, doi:10.1007/978-3-319-58496-6_11, ISBN 978-3-319-58496-6, retrieved 2023-08-12 978-3-319-58496-6
Jakupec, M. A.; Unfried, P.; Keppler, B. K. (2005). "Pharmacological properties of cerium compunds". Reviews of Physiology, Biochemistry and Pharmacology. 153. Berlin, Heidelberg: Springer Berlin Heidelberg: 101–111. doi:10.1007/s10254-004-0024-6. ISBN 978-3-540-24012-9. PMID 15674649. Retrieved 2023-08-05. 978-3-540-24012-9
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
Dai, Tianhong; Huang, Ying-Ying; Sharma, Sulbha K.; Hashmi, Javad T.; Kurup, Divya B.; Hamblin, Michael R. (2010). "Topical antimicrobials for burn wound infections". Recent Pat Anti-Infect Drug Discov. 5 (2): 124–151. doi:10.2174/157489110791233522. PMC 2935806. PMID 20429870. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935806
Attof, Rachid; Magnin, Christophe; Bertin-Maghit, Marc; Olivier, Laure; Tissot, Sylvie; Petit, Paul (2007). "Methemoglobinemia by cerium nitrate poisoning". Burns. 32 (8): 1060–1061. doi:10.1016/j.burns.2006.04.005. PMID 17027160. /wiki/Doi_(identifier)
Rim, Kyung Taek; Koo, Kwon Ho; Park, Jung Sun (March 2013). "Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review". Safety and Health at Work. 4 (1): 12–26. doi:10.5491/SHAW.2013.4.1.12. PMC 3601293. PMID 23516020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601293
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
Spellman, Frank R. (2022-12-30). The Science of Rare Earth Elements: Concepts and Applications. CRC Press. pp. 104–105. ISBN 978-1-000-82129-1. 978-1-000-82129-1
Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 120–125. ISBN 978-0-19-960563-7. 978-0-19-960563-7
"Cerium(IV) oxide, REacton Safety Data Sheet". Fisher Scientific. March 27, 2024. Retrieved August 27, 2024. https://www.fishersci.com/store/msds?partNumber=AA4466236&productDescription=CERIUM+IV+OXIDE+500G&vendorId=VN00024248&countryCode=US&language=en
Rim, Kyung Taek; Koo, Kwon Ho; Park, Jung Sun (March 2013). "Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review". Safety and Health at Work. 4 (1): 12–26. doi:10.5491/SHAW.2013.4.1.12. PMC 3601293. PMID 23516020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601293
"Cerium Safety Data Sheet" (PDF). Ames Laboratory, U. S. Department of Energy. January 26, 2016. Retrieved August 27, 2024. https://www.ameslab.gov/sites/default/files/inline-files/58_Cerium_SDS.pdf
Rim, Kyung Taek; Koo, Kwon Ho; Park, Jung Sun (March 2013). "Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review". Safety and Health at Work. 4 (1): 12–26. doi:10.5491/SHAW.2013.4.1.12. PMC 3601293. PMID 23516020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601293
Environmental Protection Agency (September 2009). Toxicological Review of Cerium Oxide and Cerium Compounds (PDF) (Report). Washington, D.C. https://iris.epa.gov/static/pdfs/1018tr.pdf