The current impediment to large-scale IGZO manufacturing is the synthesis method. The most widely used technique for transparent conducting oxide (TCO) synthesis is pulsed laser deposition (PLD). In PLD, a laser is used to focus on nano-sized spots on solid elemental targets. Laser pulse frequencies are varied between the targets in ratios to control the composition of the film. IGZO can be deposited onto substrates such as quartz, single-crystal silicon, or even plastic due to its ability for low-temperature deposition. The substrates are placed in a PLD vacuum chamber, which controls oxygen pressure in order to ensure favorable electrical properties. After synthesis, the film is annealed, or gradually exposed to air to adjust to the atmosphere.
While PLD is a useful and versatile synthesis technique, it requires expensive equipment and plenty of time for each sample to adjust to regular atmospheric conditions. This is not ideal for industrial manufacturing.
An alternative method to fabricate IGZO thin films with higher precision and scalability is the plasma-enhanced atomic layer deposition (PEALD) process. ALD is a precisely controlled chemical vapor deposition technique that deposits thin films layer by layer using gas precursors. In PEALD, the addition of a remote plasma source allows the precursor molecules to break down in the plasma, reducing reliance on thermal energy from the heated substrate and allowing for greater process flexibility.
Solution processing is a more cost effective alternative. Specifically, combustion synthesis techniques can be used. Kim et al. used a metal nitrate solution with an oxidizer to create an exothermic reaction. One common type of combustion synthesis is spin coating, which involves depositing In and Ga solution layers onto a hot plate and annealing at temperatures roughly between 200 and 400 degrees C, depending on the target composition. The films can be annealed in air, which is a large advantage over PLD.
"To the Future...|IGZO:SHARP". IGZO:SHARP (in Japanese). SHARP CORPORATION. https://global.sharp/igzo/sp/technology.html
Arjav, Bavarva; Tejas, Bavarva. "QLED and IGZO: The Future of Television Display Technology". Electronics for You.
Han, Youngmin; Seo, Juhyung; Lee, Dong Hyun; Yoo, Hocheon (February 2025). "IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies". Micromachines. 16 (2): 118. doi:10.3390/mi16020118. PMC 11857157. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857157
Nomura, K; Ohta, H; Ueda, K; Kamiya, T; Hirano, M; Hosono, H (2003-05-23). "Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor". Science. 300 (5623): 1269–1272. Bibcode:2003Sci...300.1269N. doi:10.1126/science.1083212. PMID 12764192. S2CID 20791905. /wiki/Bibcode_(identifier)
"To whom interested in Research & Development and/or Business Development of IGZO-based Oxide Semiconductor TFT". Jst.go.jp. Retrieved 2015-11-01. http://www.jst.go.jp/osirase/20130515_e.html
Nomura, K; Ohta, H; Takagi, A; Kamiya, T; Hirano, M; Hosono, H (Nov 2004). "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors". Nature. 432 (7016): 488–492. Bibcode:2004Natur.432..488N. doi:10.1038/nature03090. PMID 15565150. S2CID 4302869. /wiki/Bibcode_(identifier)
Shangguan, Qiwei; Lv, Yawei; Jiang, Changzhong (January 2024). "A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics". Nanomaterials. 14 (20): 1679. doi:10.3390/nano14201679. PMC 11510050. PMID 39453015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510050
"JST Signs Patent License Agreement with Samsung for High Performance Thin Film Transistor Technology". Jst.go.jp. July 20, 2011. Retrieved 2015-11-01. http://www.jst.go.jp/pr/announce/20110720-2/index_e.html
"JST Signs Patent License Agreement with Samsung for High Performance Thin Film Transistor Technology". Jst.go.jp. July 20, 2011. Retrieved 2015-11-01. http://www.jst.go.jp/pr/announce/20110720-2/index_e.html
"シャープとJSTが酸化物半導体に関するライセンス契約を締結 | ニュースリリース:シャープ". Sharp.co.jp. Retrieved 2015-11-01. http://www.sharp.co.jp/corporate/news/120529-c.html
"Sharp Begins Production of World's First LCD Panels Incorporating IGZO Oxide Semiconductors | Press Releases | Sharp Global". Sharp-world.com. 2012-04-13. Retrieved 2015-11-01. http://www.sharp-world.com/corporate/news/120413.html
"機能・サービス|docomo NEXT series AQUOS PHONE ZETA SH-02Eトップ|docomoラインアップ |AQUOS:シャープ". Sharp.co.jp. Retrieved 2015-11-01. http://www.sharp.co.jp/products/sh02e/service.html
"Sharp to Produce 3 Types of IGZO LCD Panels for Notebook PCs | Press Releases | Sharp Global". Sharp-world.com. 2013-05-14. Retrieved 2015-11-01. http://www.sharp-world.com/corporate/news/130514-6.html
"Fujitsu Launches New Lineup of FMV Series PCs with Four New Models - Fujitsu Global". Fujitsu.com. Retrieved 2015-11-01. http://www.fujitsu.com/global/news/pr/archives/month/2013/20130605-01.html
"LG DISPLAY SAYS UHD OLED TV PANEL PRODUCTS IN VARIOUS SIZES AND DESIGNS IN 2015 - Flat Panel TV and Display World-2 液晶・業界・動向". Flat-display-2.livedoor.biz. 2013-05-27. Retrieved 2015-11-01. http://flat-display-2.livedoor.biz/archives/28524794.html
Chiao-Shun Chuang. "P-13: Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays" (PDF). Eecs.umichy.edu. Retrieved 2015-11-01. http://www.eecs.umich.edu/omelab/downloads/Photosensitivity%20of%20Amorphous%20IGZO%20TFTs%20for%20Active-Matrix%20Flat-Panel%20Displays.pdf
Jin, B.J; Im, S; Lee, S.Y (May 2000). "Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition". Thin Solid Films. 366 (1–2): 107–110. Bibcode:2000TSF...366..107J. doi:10.1016/S0040-6090(00)00746-X. /wiki/Bibcode_(identifier)
Sheng, Jiazhen; Hong, TaeHyun; Lee, Hyun-Mo; Kim, KyoungRok; Sasase, Masato; Kim, Junghwan; Hosono, Hideo; Park, Jin-Seong (30 October 2019). "Amorphous IGZO TFT with High Mobility of ∼70 cm2/(V s) via Vertical Dimension Control Using PEALD". ACS Applied Materials & Interfaces. 11 (43): 40300–40309. doi:10.1021/acsami.9b14310. PMID 31584254. /wiki/Doi_(identifier)
Kim, Myung-Gil; Kanatzidis, Mercouri G.; Facchetti, Antonio; Marks, Tobin J. (17 April 2011). "Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing". Nature Materials. 10 (5): 382–388. Bibcode:2011NatMa..10..382K. doi:10.1038/nmat3011. PMID 21499311. /wiki/Bibcode_(identifier)
Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali (March 2004). "High-mobility ultrathin semiconducting films prepared by spin coating". Nature. 428 (6980): 299–303. Bibcode:2004Natur.428..299M. doi:10.1038/nature02389. PMID 15029191. S2CID 4358062. /wiki/Bibcode_(identifier)