Let A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } be a square system of n linear equations, where: A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] , x = [ x 1 x 2 ⋮ x n ] , b = [ b 1 b 2 ⋮ b n ] . {\displaystyle A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &a_{nn}\end{bmatrix}},\qquad \mathbf {x} ={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{bmatrix}},\qquad \mathbf {b} ={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{bmatrix}}.}
When A {\displaystyle A} and b {\displaystyle \mathbf {b} } are known, and x {\displaystyle \mathbf {x} } is unknown, we can use the Jacobi method to approximate x {\displaystyle \mathbf {x} } . The vector x ( 0 ) {\displaystyle \mathbf {x} ^{(0)}} denotes our initial guess for x {\displaystyle \mathbf {x} } (often x i ( 0 ) = 0 {\displaystyle \mathbf {x} _{i}^{(0)}=0} for i = 1 , 2 , . . . , n {\displaystyle i=1,2,...,n} ). We denote x ( k ) {\displaystyle \mathbf {x} ^{(k)}} as the k-th approximation or iteration of x {\displaystyle \mathbf {x} } , and x ( k + 1 ) {\displaystyle \mathbf {x} ^{(k+1)}} is the next (or k+1) iteration of x {\displaystyle \mathbf {x} } .
Then A can be decomposed into a diagonal component D, a lower triangular part L and an upper triangular part U: A = D + L + U where D = [ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ] and L + U = [ 0 a 12 ⋯ a 1 n a 21 0 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ 0 ] . {\displaystyle A=D+L+U\qquad {\text{where}}\qquad D={\begin{bmatrix}a_{11}&0&\cdots &0\\0&a_{22}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &a_{nn}\end{bmatrix}}{\text{ and }}L+U={\begin{bmatrix}0&a_{12}&\cdots &a_{1n}\\a_{21}&0&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &0\end{bmatrix}}.} The solution is then obtained iteratively via
The element-based formula for each row i {\displaystyle i} is thus: x i ( k + 1 ) = 1 a i i ( b i − ∑ j ≠ i a i j x j ( k ) ) , i = 1 , 2 , … , n . {\displaystyle x_{i}^{(k+1)}={\frac {1}{a_{ii}}}\left(b_{i}-\sum _{j\neq i}a_{ij}x_{j}^{(k)}\right),\quad i=1,2,\ldots ,n.} The computation of x i ( k + 1 ) {\displaystyle x_{i}^{(k+1)}} requires each element in x ( k ) {\displaystyle \mathbf {x} ^{(k)}} except itself. Unlike the Gauss–Seidel method, we cannot overwrite x i ( k ) {\displaystyle x_{i}^{(k)}} with x i ( k + 1 ) {\displaystyle x_{i}^{(k+1)}} , as that value will be needed by the rest of the computation. The minimum amount of storage is two vectors of size n.
The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1:
A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute value of the diagonal term is greater than the sum of absolute values of other terms:
The Jacobi method sometimes converges even if these conditions are not satisfied.
Note that the Jacobi method does not converge for every symmetric positive-definite matrix. For example, A = ( 29 2 1 2 6 1 1 1 1 5 ) ⇒ D − 1 ( L + U ) = ( 0 2 29 1 29 1 3 0 1 6 5 5 0 ) ⇒ ρ ( D − 1 ( L + U ) ) ≈ 1.0661 . {\displaystyle A={\begin{pmatrix}29&2&1\\2&6&1\\1&1&{\frac {1}{5}}\end{pmatrix}}\quad \Rightarrow \quad D^{-1}(L+U)={\begin{pmatrix}0&{\frac {2}{29}}&{\frac {1}{29}}\\{\frac {1}{3}}&0&{\frac {1}{6}}\\5&5&0\end{pmatrix}}\quad \Rightarrow \quad \rho (D^{-1}(L+U))\approx 1.0661\,.}
A linear system of the form A x = b {\displaystyle Ax=b} with initial estimate x ( 0 ) {\displaystyle x^{(0)}} is given by
We use the equation x ( k + 1 ) = D − 1 ( b − ( L + U ) x ( k ) ) {\displaystyle x^{(k+1)}=D^{-1}(b-(L+U)x^{(k)})} , described above, to estimate x {\displaystyle x} . First, we rewrite the equation in a more convenient form D − 1 ( b − ( L + U ) x ( k ) ) = T x ( k ) + C {\displaystyle D^{-1}(b-(L+U)x^{(k)})=Tx^{(k)}+C} , where T = − D − 1 ( L + U ) {\displaystyle T=-D^{-1}(L+U)} and C = D − 1 b {\displaystyle C=D^{-1}b} . From the known values D − 1 = [ 1 / 2 0 0 1 / 7 ] , L = [ 0 0 5 0 ] and U = [ 0 1 0 0 ] . {\displaystyle D^{-1}={\begin{bmatrix}1/2&0\\0&1/7\\\end{bmatrix}},\ L={\begin{bmatrix}0&0\\5&0\\\end{bmatrix}}\quad {\text{and}}\quad U={\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}.} we determine T = − D − 1 ( L + U ) {\displaystyle T=-D^{-1}(L+U)} as T = [ 1 / 2 0 0 1 / 7 ] { [ 0 0 − 5 0 ] + [ 0 − 1 0 0 ] } = [ 0 − 1 / 2 − 5 / 7 0 ] . {\displaystyle T={\begin{bmatrix}1/2&0\\0&1/7\\\end{bmatrix}}\left\{{\begin{bmatrix}0&0\\-5&0\\\end{bmatrix}}+{\begin{bmatrix}0&-1\\0&0\\\end{bmatrix}}\right\}={\begin{bmatrix}0&-1/2\\-5/7&0\\\end{bmatrix}}.} Further, C {\displaystyle C} is found as C = [ 1 / 2 0 0 1 / 7 ] [ 11 13 ] = [ 11 / 2 13 / 7 ] . {\displaystyle C={\begin{bmatrix}1/2&0\\0&1/7\\\end{bmatrix}}{\begin{bmatrix}11\\13\\\end{bmatrix}}={\begin{bmatrix}11/2\\13/7\\\end{bmatrix}}.} With T {\displaystyle T} and C {\displaystyle C} calculated, we estimate x {\displaystyle x} as x ( 1 ) = T x ( 0 ) + C {\displaystyle x^{(1)}=Tx^{(0)}+C} : x ( 1 ) = [ 0 − 1 / 2 − 5 / 7 0 ] [ 1 1 ] + [ 11 / 2 13 / 7 ] = [ 5.0 8 / 7 ] ≈ [ 5 1.143 ] . {\displaystyle x^{(1)}={\begin{bmatrix}0&-1/2\\-5/7&0\\\end{bmatrix}}{\begin{bmatrix}1\\1\\\end{bmatrix}}+{\begin{bmatrix}11/2\\13/7\\\end{bmatrix}}={\begin{bmatrix}5.0\\8/7\\\end{bmatrix}}\approx {\begin{bmatrix}5\\1.143\\\end{bmatrix}}.} The next iteration yields x ( 2 ) = [ 0 − 1 / 2 − 5 / 7 0 ] [ 5.0 8 / 7 ] + [ 11 / 2 13 / 7 ] = [ 69 / 14 − 12 / 7 ] ≈ [ 4.929 − 1.714 ] . {\displaystyle x^{(2)}={\begin{bmatrix}0&-1/2\\-5/7&0\\\end{bmatrix}}{\begin{bmatrix}5.0\\8/7\\\end{bmatrix}}+{\begin{bmatrix}11/2\\13/7\\\end{bmatrix}}={\begin{bmatrix}69/14\\-12/7\\\end{bmatrix}}\approx {\begin{bmatrix}4.929\\-1.714\\\end{bmatrix}}.} This process is repeated until convergence (i.e., until ‖ A x ( n ) − b ‖ {\displaystyle \|Ax^{(n)}-b\|} is small). The solution after 25 iterations is
Suppose we are given the following linear system:
If we choose (0, 0, 0, 0) as the initial approximation, then the first approximate solution is given by x 1 = ( 6 + 0 − ( 2 ∗ 0 ) ) / 10 = 0.6 , x 2 = ( 25 + 0 + 0 − ( 3 ∗ 0 ) ) / 11 = 25 / 11 = 2.2727 , x 3 = ( − 11 − ( 2 ∗ 0 ) + 0 + 0 ) / 10 = − 1.1 , x 4 = ( 15 − ( 3 ∗ 0 ) + 0 ) / 8 = 1.875. {\displaystyle {\begin{aligned}x_{1}&=(6+0-(2*0))/10=0.6,\\x_{2}&=(25+0+0-(3*0))/11=25/11=2.2727,\\x_{3}&=(-11-(2*0)+0+0)/10=-1.1,\\x_{4}&=(15-(3*0)+0)/8=1.875.\end{aligned}}} Using the approximations obtained, the iterative procedure is repeated until the desired accuracy has been reached. The following are the approximated solutions after five iterations.
The exact solution of the system is (1, 2, −1, 1).
The weighted Jacobi iteration uses a parameter ω {\displaystyle \omega } to compute the iteration as
with ω = 2 / 3 {\displaystyle \omega =2/3} being the usual choice.1 From the relation L + U = A − D {\displaystyle L+U=A-D} , this may also be expressed as
In case that the system matrix A {\displaystyle A} is of symmetric positive-definite type one can show convergence.
Let C = C ω = I − ω D − 1 A {\displaystyle C=C_{\omega }=I-\omega D^{-1}A} be the iteration matrix. Then, convergence is guaranteed for
where λ max {\displaystyle \lambda _{\text{max}}} is the maximal eigenvalue.
The spectral radius can be minimized for a particular choice of ω = ω opt {\displaystyle \omega =\omega _{\text{opt}}} as follows min ω ρ ( C ω ) = ρ ( C ω opt ) = 1 − 2 κ ( D − 1 A ) + 1 for ω opt := 2 λ min ( D − 1 A ) + λ max ( D − 1 A ) , {\displaystyle \min _{\omega }\rho (C_{\omega })=\rho (C_{\omega _{\text{opt}}})=1-{\frac {2}{\kappa (D^{-1}A)+1}}\quad {\text{for}}\quad \omega _{\text{opt}}:={\frac {2}{\lambda _{\text{min}}(D^{-1}A)+\lambda _{\text{max}}(D^{-1}A)}}\,,} where κ {\displaystyle \kappa } is the matrix condition number.
Saad, Yousef (2003). Iterative Methods for Sparse Linear Systems (2nd ed.). SIAM. p. 414. ISBN 0898715342. 0898715342 ↩