Let f be a weight 2 newform on Γ0(qN) – i.e. of level qN where q does not divide N – with absolutely irreducible 2-dimensional mod p Galois representation ρf,p unramified at q if q ≠ p and finite flat at q = p. Then there exists a weight 2 newform g of level N such that
In particular, if E is an elliptic curve over Q {\displaystyle \mathbb {Q} } with conductor qN, then the modularity theorem guarantees that there exists a weight 2 newform f of level qN such that the 2-dimensional mod p Galois representation ρf, p of f is isomorphic to the 2-dimensional mod p Galois representation ρE, p of E. To apply Ribet's Theorem to ρE, p, it suffices to check the irreducibility and ramification of ρE, p. Using the theory of the Tate curve, one can prove that ρE, p is unramified at q ≠ p and finite flat at q = p if p divides the power to which q appears in the minimal discriminant ΔE. Then Ribet's theorem implies that there exists a weight 2 newform g of level N such that ρg, p ≈ ρE, p.
Ribet's theorem states that beginning with an elliptic curve E of conductor qN does not guarantee the existence of an elliptic curve E′ of level N such that ρE, p ≈ ρE′, p. The newform g of level N may not have rational Fourier coefficients, and hence may be associated to a higher-dimensional abelian variety, not an elliptic curve. For example, elliptic curve 4171a1 in the Cremona database given by the equation
with conductor 43 × 97 and discriminant 437 × 973 does not level-lower mod 7 to an elliptic curve of conductor 97. Rather, the mod p Galois representation is isomorphic to the mod p Galois representation of an irrational newform g of level 97.
However, for p large enough compared to the level N of the level-lowered newform, a rational newform (e.g. an elliptic curve) must level-lower to another rational newform (e.g. elliptic curve). In particular for p ≫ NN1+ε, the mod p Galois representation of a rational newform cannot be isomorphic to an irrational newform of level N.2
Similarly, the Frey-Mazur conjecture predicts that for large enough p (independent of the conductor N), elliptic curves with isomorphic mod p Galois representations are in fact isogenous, and hence have the same conductor. Thus non-trivial level-lowering between rational newforms is not predicted to occur for large p (p > 17).
In his thesis, Yves Hellegouarch [fr] originated the idea of associating solutions (a,b,c) of Fermat's equation with a different mathematical object: an elliptic curve.3 If p is an odd prime and a, b, and c are positive integers such that
then a corresponding Frey curve is an algebraic curve given by the equation
This is a nonsingular algebraic curve of genus one defined over Q {\displaystyle \mathbb {Q} } , and its projective completion is an elliptic curve over Q {\displaystyle \mathbb {Q} } .
In 1982 Gerhard Frey called attention to the unusual properties of the same curve, now called a Frey curve.4 This provided a bridge between Fermat and Taniyama by showing that a counterexample to FLT would create a curve that would not be modular. The conjecture attracted considerable interest when Frey suggested that the Taniyama–Shimura conjecture implies FLT. However, his argument was not complete.5 In 1985 Jean-Pierre Serre proposed that a Frey curve could not be modular and provided a partial proof.67 This showed that a proof of the semistable case of the Taniyama–Shimura conjecture would imply FLT. Serre did not provide a complete proof and the missing bit became known as the epsilon conjecture or ε-conjecture. In the summer of 1986, Kenneth Alan Ribet proved the epsilon conjecture, thereby proving that the Modularity theorem implied FLT.8
The origin of the name is from the ε part of "Taniyama-Shimura conjecture + ε ⇒ Fermat's last theorem".
Suppose that the Fermat equation with exponent p ≥ 59 had a solution in non-zero integers a, b, c. The corresponding Frey curve Eap,bp,cp is an elliptic curve whose minimal discriminant Δ is equal to 2−8 (abc)2p and whose conductor N is the radical of abc, i.e. the product of all distinct primes dividing abc. An elementary consideration of the equation ap + bp = cp, makes it clear that one of a, b, c is even and hence so is N. By the Taniyama–Shimura conjecture, E is a modular elliptic curve. Since all odd primes dividing a, b, c in N appear to a pth power in the minimal discriminant Δ, by Ribet's theorem repetitive level descent modulo p strips all odd primes from the conductor. However, no newforms of level 2 remain because the genus of the modular curve X0(2) is zero (and newforms of level N are differentials on X0(N)).
"The Proof of Fermat's Last Theorem". 2008-12-10. Archived from the original on 2008-12-10. https://web.archive.org/web/20081210102243/http://cgd.best.vwh.net/home/flt/flt08.htm ↩
Silliman, Jesse; Vogt, Isabel (2015). "Powers in Lucas Sequences via Galois Representations". Proceedings of the American Mathematical Society. 143 (3): 1027–1041. arXiv:1307.5078. CiteSeerX 10.1.1.742.7591. doi:10.1090/S0002-9939-2014-12316-1. MR 3293720. S2CID 16892383. /wiki/Proceedings_of_the_American_Mathematical_Society ↩
Hellegouarch, Yves (1972). "Courbes elliptiques et equation de Fermat". Doctoral Dissertation. BnF 359121326. /wiki/BNF_(identifier) ↩
Frey, Gerhard (1982), "Rationale Punkte auf Fermatkurven und getwisteten Modulkurven" [Rational points on Fermat curves and twisted modular curves], J. Reine Angew. Math. (in German), 1982 (331): 185–191, doi:10.1515/crll.1982.331.185, MR 0647382, S2CID 118263144 /wiki/J._Reine_Angew._Math. ↩
Frey, Gerhard (1986), "Links between stable elliptic curves and certain Diophantine equations", Annales Universitatis Saraviensis. Series Mathematicae, 1 (1): iv+40, ISSN 0933-8268, MR 0853387 /wiki/ISSN_(identifier) ↩
Serre, J.-P. (1987), "Lettre à J.-F. Mestre [Letter to J.-F. Mestre]", Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemporary Mathematics (in French), vol. 67, Providence, RI: American Mathematical Society, pp. 263–268, doi:10.1090/conm/067/902597, ISBN 9780821850749, MR 0902597 9780821850749 ↩
Serre, Jean-Pierre (1987), "Sur les représentations modulaires de degré 2 de Gal(Q/Q)", Duke Mathematical Journal, 54 (1): 179–230, doi:10.1215/S0012-7094-87-05413-5, ISSN 0012-7094, MR 0885783 /wiki/Jean-Pierre_Serre ↩
Ribet, Ken (1990). "On modular representations of Gal(Q/Q) arising from modular forms" (PDF). Inventiones Mathematicae. 100 (2): 431–476. Bibcode:1990InMat.100..431R. doi:10.1007/BF01231195. MR 1047143. S2CID 120614740. /wiki/Ken_Ribet ↩