Traditionally, it was believed that CTC clusters needed to dissociate into individual cells during their journey through the bloodstream to seed secondary tumors. However, recent studies show that CTC clusters can travel through the bloodstream intact, enabling them to perform every step of metastasis while maintaining their group/cluster structure.
The cancer exodus hypothesis asserts that CTC clusters have several distinct advantages that increase their metastatic potential:
The cancer exodus hypothesis offers important insights into how metastasis occurs and highlights the significance of CTC clusters in cancer progression. Detecting and analyzing CTC clusters through liquid biopsies could offer valuable information about the aggressiveness and metastatic potential of cancers. This information is particularly useful for identifying patients who may benefit from more aggressive treatment strategies.
The hypothesis was developed due to several key studies, which have demonstrated the ability of CTC clusters to:
These findings underscore the critical role of CTC clusters in driving the metastatic cascade and suggest that CTC clusters could serve as important biomarkers in cancer diagnosis, prognosis, and treatment planning. Additionally, understanding the mechanisms that allow CTC clusters to retain their structure and survive in circulation opens new avenues for targeted cancer therapies designed to disrupt this process.
As research into the cancer exodus hypothesis progresses, new therapeutic strategies could emerge to specifically target CTC clusters. Blocking their formation, disrupting their cohesion, or preventing their ability to survive in the bloodstream could offer new ways to prevent metastasis in aggressive cancers. Continued studies will be essential to further elucidate the biological pathways involved in CTC cluster-mediated metastasis and develop potential treatment interventions.
Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N (February 2023). "Biology, vulnerabilities and clinical applications of circulating tumour cells". Nature Reviews. Cancer. 23 (2): 95–111. doi:10.1038/s41568-022-00536-4. PMC 9734934. PMID 36494603. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734934
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, et al. (September 2019). "Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential". Journal of Cell Science. 132 (17). doi:10.1242/jcs.231563. PMC 6771143. PMID 31409692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771143
Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. (August 2014). "Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis". Cell. 158 (5): 1110–1122. doi:10.1016/j.cell.2014.07.013. PMC 4149753. PMID 25171411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149753
Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. (August 2014). "Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis". Cell. 158 (5): 1110–1122. doi:10.1016/j.cell.2014.07.013. PMC 4149753. PMID 25171411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149753
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, et al. (September 2019). "Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential". Journal of Cell Science. 132 (17). doi:10.1242/jcs.231563. PMC 6771143. PMID 31409692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771143
Au SH, Storey BD, Moore JC, Tang Q, Chen YL, Javaid S, et al. (May 2016). "Clusters of circulating tumor cells traverse capillary-sized vessels". Proceedings of the National Academy of Sciences of the United States of America. 113 (18): 4947–4952. Bibcode:2016PNAS..113.4947A. doi:10.1073/pnas.1524448113. PMC 4983862. PMID 27091969. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983862
Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. (August 2014). "Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis". Cell. 158 (5): 1110–1122. doi:10.1016/j.cell.2014.07.013. PMC 4149753. PMID 25171411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149753
Sayed ZS, Khattap MG, Madkour MA, Yasen NS, Elbary HA, Elsayed RA, et al. (April 2024). "Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature". Discover Oncology. 15 (1): 94. doi:10.1007/s12672-024-00949-7. PMC 10984915. PMID 38557916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984915
Schuster E, Taftaf R, Reduzzi C, Albert MK, Romero-Calvo I, Liu H (November 2021). "Better together: circulating tumor cell clustering in metastatic cancer". Trends in Cancer. 7 (11): 1020–1032. doi:10.1016/j.trecan.2021.07.001. PMC 8541931. PMID 34481763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541931
Aceto N, Toner M, Maheswaran S, Haber DA (September 2015). "En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition". Trends in Cancer. 1 (1): 44–52. doi:10.1016/j.trecan.2015.07.006. PMID 28741562. /wiki/Doi_(identifier)
Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. (July 2015). "A microfluidic device for label-free, physical capture of circulating tumor cell clusters". Nature Methods. 12 (7): 685–691. doi:10.1038/nmeth.3404. PMC 4490017. PMID 25984697. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490017
Allen TA, Cullen MM, Hawkey N, Mochizuki H, Nguyen L, Schechter E, et al. (2021). "A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation". Frontiers in Oncology. 11: 641187. doi:10.3389/fonc.2021.641187. PMC 8495265. PMID 34631514. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495265
Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. (July 2015). "A microfluidic device for label-free, physical capture of circulating tumor cell clusters". Nature Methods. 12 (7): 685–691. doi:10.1038/nmeth.3404. PMC 4490017. PMID 25984697. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490017
Amintas S, Bedel A, Moreau-Gaudry F, Boutin J, Buscail L, Merlio JP, et al. (April 2020). "Circulating Tumor Cell Clusters: United We Stand Divided We Fall". International Journal of Molecular Sciences. 21 (7): 2653. doi:10.3390/ijms21072653. PMC 7177734. PMID 32290245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177734
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, et al. (September 2019). "Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential". Journal of Cell Science. 132 (17). doi:10.1242/jcs.231563. PMC 6771143. PMID 31409692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771143
Lawrence R, Watters M, Davies CR, Pantel K, Lu YJ (July 2023). "Circulating tumour cells for early detection of clinically relevant cancer". Nature Reviews. Clinical Oncology. 20 (7): 487–500. doi:10.1038/s41571-023-00781-y. PMC 10237083. PMID 37268719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237083
Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. (February 2016). "Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters". Proceedings of the National Academy of Sciences of the United States of America. 113 (7): E854 – E863. Bibcode:2016PNAS..113E.854C. doi:10.1073/pnas.1508541113. PMC 4763783. PMID 26831077. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763783
Au SH, Storey BD, Moore JC, Tang Q, Chen YL, Javaid S, et al. (May 2016). "Clusters of circulating tumor cells traverse capillary-sized vessels". Proceedings of the National Academy of Sciences of the United States of America. 113 (18): 4947–4952. Bibcode:2016PNAS..113.4947A. doi:10.1073/pnas.1524448113. PMC 4983862. PMID 27091969. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983862
Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. (August 2014). "Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis". Cell. 158 (5): 1110–1122. doi:10.1016/j.cell.2014.07.013. PMC 4149753. PMID 25171411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149753
Allen TA, Gracieux D, Talib M, Tokarz DA, Hensley MT, Cores J, et al. (January 2017). "Angiopellosis as an Alternative Mechanism of Cell Extravasation". Stem Cells. 35 (1): 170–180. doi:10.1002/stem.2451. PMC 5376103. PMID 27350343. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376103
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, et al. (September 2019). "Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential". Journal of Cell Science. 132 (17). doi:10.1242/jcs.231563. PMC 6771143. PMID 31409692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771143
Sayed ZS, Khattap MG, Madkour MA, Yasen NS, Elbary HA, Elsayed RA, et al. (April 2024). "Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature". Discover Oncology. 15 (1): 94. doi:10.1007/s12672-024-00949-7. PMC 10984915. PMID 38557916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984915
Taftaf R, Liu X, Singh S, Jia Y, Dashzeveg NK, Hoffmann AD, et al. (August 2021). "ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer". Nature Communications. 12 (1): 4867. Bibcode:2021NatCo..12.4867T. doi:10.1038/s41467-021-25189-z. PMC 8358026. PMID 34381029. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358026
Allen TA (March 2024). "The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance". Cancers. 16 (7): 1377. doi:10.3390/cancers16071377. PMC 11010957. PMID 38611055. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11010957
Khoo BL, Grenci G, Lim YB, Lee SC, Han J, Lim CT (January 2018). "Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device". Nature Protocols. 13 (1): 34–58. doi:10.1038/nprot.2017.125. PMID 29215634. /wiki/Doi_(identifier)