With these parameters, the selection pressure can be influenced to a considerable extent. For example, it increases with the interconnectedness of the islands and decreases with the number of subpopulations or the epoch length.
A commonly used structure for arranging the individuals of a population is a 2D toroidal grid, although the number of dimensions can be easily extended (to 3D) or reduced (to 1D, e.g. a ring, see the figure on the right). The neighbourhood of a particular individual in the grid is defined in terms of the Manhattan distance from it to others in the population. In the basic algorithm, all the neighbourhoods have the same size and identical shapes. The two most commonly used neighbourhoods for two dimesional cEAs are L5 and C9, see the figure on the left. Here, L stands for Linear while C stands for Compact. Each deme represents a panmictic subpopulation within which mate selection and the acceptance of offspring takes place by replacing the parent. The rules for the acceptance of offspring are local in nature and based on the neighbourhood: for example, it can be specified that the best offspring must be better than the parent being replaced or, less strictly, only better than the worst individual in the deme. The first rule is elitist and creates a higher selective pressure than the second non-elitist rule. In elitist EAs, the best individual of a population always survives. In this respect, they deviate from the biological model.
The overlap of the neighbourhoods causes a mostly slow spread of genetic information across the neighbourhood boundaries, hence the name diffusion model. A better offspring now needs more generations than in panmixy to spread in the population. This promotes the emergence of local niches and their local evolution, thus preserving genotypic diversity over a longer period of time. The result is a better and dynamic balance between breadth and depth search adapted to the search space during a run. Depth search takes place in the niches and breadth search in the niche boundaries and through the evolution of the different niches of the whole population. For the same neighbourhood size, the spread of genetic information is larger for elongated figures like L9 than for a block like C9, and again significantly larger than for a ring. This means that ring neighbourhoods are well suited for achieving high quality results, even if this requires comparatively long run times. On the other hand, if one is primarily interested in fast and good, but possibly suboptimal results, 2D topologies are more suitable.
When applying both population models to genetic algorithms, evolutionary strategy and other EAs, the splitting of a total population into subpopulations usually reduces the risk of premature convergence and leads to better results overall more reliably and faster than would be expected with panmictic EAs.
Island models have the disadvantage compared to neighbourhood models that they introduce a large number of new strategy parameters. Despite the existing studies on this topic in the literature, a certain risk of unfavourable settings remains for the user. With neighbourhood models, on the other hand, only the size of the neighbourhood has to be specified and, in the case of the two-dimensional model, the choice of the neighbourhood figure is added.
Since both population models imply population partitioning, they are well suited as a basis for parallelizing an EA. This applies even more to cellular EAs, since they rely only on locally available information about the members of their respective demes. Thus, in the extreme case, an independent execution thread can be assigned to each individual, so that the entire cEA can run on a parallel hardware platform. The island model also supports parallelization, e.g. by assigning a processor to each island. If the subpopulations of the islands are organized panmictically, all evaluations of the descendants of a generation can be parallelized additionally. In real-world applications the evaluations are usually by far the most time-consuming part. Of course, it is also possible to design the island sub-populations as cEAs, so that the statements made before about parallelizing cEAs apply. In this way, hierarchical population structures with the appropriate parallelizations can be created. Not only comparatively expensive computer clusters but also inexpensive graphics cards (GPUs) or the computers of a grid can be used for parallelization.
However, it is important to stress that cEAs, or EAs with a population distributed across islands, represent a search model that differs in many ways from traditional EAs. Moreover, they can run on both sequential and parallel platforms, which highlights the fact that model and implementation are two different concepts.
Cantú-Paz, Erik (1998). "A survey of parallel genetic algorithms" (PDF). Calculateurs Paralleles. 10 (2): 141–171. https://neo.lcc.uma.es/cEA-web/documents/cant98.pdf
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Leung, Yee; Gao, Yong; Xu, Zong-Ben (1997). "Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis". IEEE Transactions on Neural Networks. 8 (5): 1165–1176. doi:10.1109/72.623217. ISSN 1045-9227. PMID 18255718. https://ieeexplore.ieee.org/document/623217
Gorges-Schleuter, Martina (1990). Genetic Algorithms and Population Structures - A Massively Parallel Algorithm (PhD). Universität Dortmund, Fakultät für Informatik, Germany.
Cantú-Paz, Erik (1998). "A survey of parallel genetic algorithms" (PDF). Calculateurs Paralleles. 10 (2): 141–171. https://neo.lcc.uma.es/cEA-web/documents/cant98.pdf
Cantú-Paz, Erik (1999). Efficient and Accurate Parallel Genetic Algorithms (PhD thesis, University of Illinois, Urbana-Champaign, USA). Genetic Algorithms and Evolutionary Computation. Vol. 1. Springer, New York, NY. doi:10.1007/978-1-4615-4369-5. ISBN 978-1-4613-6964-6. 978-1-4613-6964-6
Gorges-Schleuter, Martina (1990). Genetic Algorithms and Population Structures - A Massively Parallel Algorithm (PhD). Universität Dortmund, Fakultät für Informatik, Germany.
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gordon, V. Scott; Mathias, Keith; Whitley, Darrell (1994), "Cellular genetic algorithms as function optimizers", Proceedings of the 1994 ACM symposium on Applied computing - SAC '94, Phoenix, Arizona, United States: ACM Press, pp. 237–241, doi:10.1145/326619.326732, ISBN 978-0-89791-647-9, S2CID 6418773 978-0-89791-647-9
Giacobini, M.; Tomassini, M.; Tettamanzi, A.G.B.; Alba, E. (October 2005). "Selection Intensity in Cellular Evolutionary Algorithms for Regular Lattices". IEEE Transactions on Evolutionary Computation. 9 (5): 489–505. doi:10.1109/TEVC.2005.850298. ISSN 1089-778X. S2CID 3184685. https://www.researchgate.net/publication/3418844
Cantú-Paz, Erik (1998). "A survey of parallel genetic algorithms" (PDF). Calculateurs Paralleles. 10 (2): 141–171. https://neo.lcc.uma.es/cEA-web/documents/cant98.pdf
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Gorges-Schleuter, Martina (1990). Genetic Algorithms and Population Structures - A Massively Parallel Algorithm (PhD). Universität Dortmund, Fakultät für Informatik, Germany.
Cantú-Paz, Erik (1999). Efficient and Accurate Parallel Genetic Algorithms (PhD thesis, University of Illinois, Urbana-Champaign, USA). Genetic Algorithms and Evolutionary Computation. Vol. 1. Springer, New York, NY. doi:10.1007/978-1-4615-4369-5. ISBN 978-1-4613-6964-6. 978-1-4613-6964-6
Khalloof, Hatem; Mohammad, Mohammad; Shahoud, Shadi; Duepmeier, Clemens; Hagenmeyer, Veit (2020-11-02), "A Generic Flexible and Scalable Framework for Hierarchical Parallelization of Population-Based Metaheuristics", Proceedings of the 12th International Conference on Management of Digital EcoSystems, Virtual Event United Arab Emirates: ACM, pp. 124–131, doi:10.1145/3415958.3433041, ISBN 978-1-4503-8115-4, S2CID 227179748 978-1-4503-8115-4
Sudholt, Dirk (2015), Kacprzyk, Janusz; Pedrycz, Witold (eds.), "Parallel Evolutionary Algorithms" (PDF), Springer Handbook of Computational Intelligence, Berlin, Heidelberg: Springer, pp. 929–959, doi:10.1007/978-3-662-43505-2_46, ISBN 978-3-662-43504-5, retrieved 2023-02-13 978-3-662-43504-5
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Cantú-Paz, Erik (1999). Efficient and Accurate Parallel Genetic Algorithms (PhD thesis, University of Illinois, Urbana-Champaign, USA). Genetic Algorithms and Evolutionary Computation. Vol. 1. Springer, New York, NY. doi:10.1007/978-1-4615-4369-5. ISBN 978-1-4613-6964-6. 978-1-4613-6964-6
Cantú-Paz, Erick (1999), "Topologies, Migration Rates, and Multi-Population Parallel Genetic Algorithms", Proc. of the 1st Annual Conf. on Genetic and Evolutionary Computation (GECCO), pp. 91–98 https://dl.acm.org/doi/pdf/10.5555/2933923.2933933
Belkadi, K.; Gourgand, M.; Benyettou, M. (2006-11-08). "Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem". Journal of Applied Mathematics and Decision Sciences. 2006: 1–17. doi:10.1155/JAMDS/2006/65746 (inactive 25 Apr 2025). ISSN 1173-9126.{{cite journal}}: CS1 maint: DOI inactive as of April 2025 (link) /wiki/Doi_(identifier)
Abdelhafez, Amr; Alba, Enrique; Luque, Gabriel (September 2019). "Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors". Swarm and Evolutionary Computation. 49: 147–157. doi:10.1016/j.swevo.2019.06.003. S2CID 196193164. https://www.researchgate.net/publication/333839442
Adar, N.; Kuvat, G. (2016). "Parallel Genetic Algorithms with Dynamic Topology using Cluster Computing". Advances in Electrical and Computer Engineering. 16 (3): 73–80. doi:10.4316/AECE.2016.03011. ISSN 1582-7445. http://www.aece.ro/abstractplus.php?year=2016&number=3&article=11
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gordon, V. Scott; Mathias, Keith; Whitley, Darrell (1994), "Cellular genetic algorithms as function optimizers", Proceedings of the 1994 ACM symposium on Applied computing - SAC '94, Phoenix, Arizona, United States: ACM Press, pp. 237–241, doi:10.1145/326619.326732, ISBN 978-0-89791-647-9, S2CID 6418773 978-0-89791-647-9
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gordon, V. Scott; Mathias, Keith; Whitley, Darrell (1994), "Cellular genetic algorithms as function optimizers", Proceedings of the 1994 ACM symposium on Applied computing - SAC '94, Phoenix, Arizona, United States: ACM Press, pp. 237–241, doi:10.1145/326619.326732, ISBN 978-0-89791-647-9, S2CID 6418773 978-0-89791-647-9
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gordon, V. Scott; Mathias, Keith; Whitley, Darrell (1994), "Cellular genetic algorithms as function optimizers", Proceedings of the 1994 ACM symposium on Applied computing - SAC '94, Phoenix, Arizona, United States: ACM Press, pp. 237–241, doi:10.1145/326619.326732, ISBN 978-0-89791-647-9, S2CID 6418773 978-0-89791-647-9
Giacobini, M.; Tomassini, M.; Tettamanzi, A.G.B.; Alba, E. (October 2005). "Selection Intensity in Cellular Evolutionary Algorithms for Regular Lattices". IEEE Transactions on Evolutionary Computation. 9 (5): 489–505. doi:10.1109/TEVC.2005.850298. ISSN 1089-778X. S2CID 3184685. https://www.researchgate.net/publication/3418844
Alba, Enrique; Troya, José Ma (2000), Schoenauer, Marc; Deb, Kalyanmoy; Rudolph, Günther; Yao, Xin (eds.), "Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio", Parallel Problem Solving from Nature PPSN VI, vol. 1917, Berlin, Heidelberg: Springer, pp. 29–38, doi:10.1007/3-540-45356-3_3, ISBN 978-3-540-41056-0, retrieved 2023-02-11 978-3-540-41056-0
Gordon, V. Scott; Mathias, Keith; Whitley, Darrell (1994), "Cellular genetic algorithms as function optimizers", Proceedings of the 1994 ACM symposium on Applied computing - SAC '94, Phoenix, Arizona, United States: ACM Press, pp. 237–241, doi:10.1145/326619.326732, ISBN 978-0-89791-647-9, S2CID 6418773 978-0-89791-647-9
Folino, G.; Pizzuti, C.; Spezzano, G. (1998), "Combining cellular genetic algorithms and local search for solving satisfiability problems", Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294), Taipei, Taiwan: IEEE, pp. 192–198, doi:10.1109/TAI.1998.744842, ISBN 978-0-7803-5214-8, S2CID 8048158 978-0-7803-5214-8
Sprave, Joachim (1994), "Linear neighborhood evolution strategy" (PDF), Proceedings of the 3rd Annual Conference on Evolutionary Programming, Singapore: World Scientific, pp. 42–51, retrieved 2022-11-05 http://ls11-www.cs.tu-dortmund.de/~joe/papers/ep94.pdf
Cantú-Paz, Erik (1998). "A survey of parallel genetic algorithms" (PDF). Calculateurs Paralleles. 10 (2): 141–171. https://neo.lcc.uma.es/cEA-web/documents/cant98.pdf
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Alba, Enrique; Troya, José Ma (2000), Schoenauer, Marc; Deb, Kalyanmoy; Rudolph, Günther; Yao, Xin (eds.), "Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio", Parallel Problem Solving from Nature PPSN VI, vol. 1917, Berlin, Heidelberg: Springer, pp. 29–38, doi:10.1007/3-540-45356-3_3, ISBN 978-3-540-41056-0, retrieved 2023-02-11 978-3-540-41056-0
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Alba, Enrique; Troya, José Ma (2000), Schoenauer, Marc; Deb, Kalyanmoy; Rudolph, Günther; Yao, Xin (eds.), "Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio", Parallel Problem Solving from Nature PPSN VI, vol. 1917, Berlin, Heidelberg: Springer, pp. 29–38, doi:10.1007/3-540-45356-3_3, ISBN 978-3-540-41056-0, retrieved 2023-02-11 978-3-540-41056-0
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Sprave, Joachim (1994), "Linear neighborhood evolution strategy" (PDF), Proceedings of the 3rd Annual Conference on Evolutionary Programming, Singapore: World Scientific, pp. 42–51, retrieved 2022-11-05 http://ls11-www.cs.tu-dortmund.de/~joe/papers/ep94.pdf
Lim, Dudy; Ong, Yew-Soon; Jin, Yaochu; Sendhoff, Bernhard; Lee, Bu-Sung (2007). "Efficient Hierarchical Parallel Genetic Algorithms using Grid computing". Future Generation Computer Systems. 23 (4): 658–670. doi:10.1016/j.future.2006.10.008. https://www.researchgate.net/publication/222914963
Gorges-Schleuter, Martina (1990). Genetic Algorithms and Population Structures - A Massively Parallel Algorithm (PhD). Universität Dortmund, Fakultät für Informatik, Germany.
Alba, Enrique; Dorronsoro, Bernabé (2008). Cellular genetic algorithms. New York: Springer. p. 12. ISBN 978-0-387-77610-1. OCLC 370728730. 978-0-387-77610-1
Gorges-Schleuter, Martina (1998), Eiben, Agoston E.; Bäck, Thomas; Schoenauer, Marc; Schwefel, Hans-Paul (eds.), "A comparative study of global and local selection in evolution strategies", Parallel Problem Solving from Nature — PPSN V, Lecture Notes in Computer Science, vol. 1498, Berlin, Heidelberg: Springer, pp. 367–377, doi:10.1007/bfb0056879, ISBN 978-3-540-65078-2, retrieved 2023-02-11 978-3-540-65078-2
Cantú-Paz, Erik (1999). Efficient and Accurate Parallel Genetic Algorithms (PhD thesis, University of Illinois, Urbana-Champaign, USA). Genetic Algorithms and Evolutionary Computation. Vol. 1. Springer, New York, NY. doi:10.1007/978-1-4615-4369-5. ISBN 978-1-4613-6964-6. 978-1-4613-6964-6
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Gorges-Schleuter, Martina (1998), Eiben, Agoston E.; Bäck, Thomas; Schoenauer, Marc; Schwefel, Hans-Paul (eds.), "A comparative study of global and local selection in evolution strategies", Parallel Problem Solving from Nature — PPSN V, Lecture Notes in Computer Science, vol. 1498, Berlin, Heidelberg: Springer, pp. 367–377, doi:10.1007/bfb0056879, ISBN 978-3-540-65078-2, retrieved 2023-02-11 978-3-540-65078-2
Sprave, Joachim (1994), "Linear neighborhood evolution strategy" (PDF), Proceedings of the 3rd Annual Conference on Evolutionary Programming, Singapore: World Scientific, pp. 42–51, retrieved 2022-11-05 http://ls11-www.cs.tu-dortmund.de/~joe/papers/ep94.pdf
Gorges-Schleuter, Martina; Sieber, Ingo; Jakob, Wilfried (1999), "Local interaction evolution strategies for design optimization", Conf. Proc. Congress on Evolutionary Computation (CEC 99), IEEE, pp. 2167–2174, doi:10.1109/CEC.1999.785544, ISBN 978-0-7803-5536-1 978-0-7803-5536-1
Jakob, Wilfried (2010-09-01). "A general cost-benefit-based adaptation framework for multimeme algorithms". Memetic Computing. 2 (3). p. 207: 201–218. doi:10.1007/s12293-010-0040-9. ISSN 1865-9292. S2CID 167807. https://doi.org/10.1007/s12293-010-0040-9
Alba, Enrique; Dorronsoro, Bernabé; Alfonso, Hugo (2005). "Cellular Memetic Algorithms". Journal of Computer Science and Technology. 5 (4): 257–263. Retrieved 2022-11-04. https://journal.info.unlp.edu.ar/JCST/article/view/845
Gordon, V.S.; Whitley, D. (1993), Forrest, S. (ed.), "Serial and Parallel Genetic Algorithms as Function Optimizers" (PDF), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 177–183, ISBN 978-1-55860-299-1 978-1-55860-299-1
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Cantú-Paz, Erick (1999), "Topologies, Migration Rates, and Multi-Population Parallel Genetic Algorithms", Proc. of the 1st Annual Conf. on Genetic and Evolutionary Computation (GECCO), pp. 91–98 https://dl.acm.org/doi/pdf/10.5555/2933923.2933933
Wen-Yang Lin; Tzung-Pei Hong; Shu-Min Liu (2004), "On adapting migration parameters for multi-population genetic algorithms", 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), vol. 6, The Hague, Netherlands: IEEE, pp. 5731–5735, doi:10.1109/ICSMC.2004.1401108, ISBN 978-0-7803-8567-2, S2CID 31844333 978-0-7803-8567-2
Hong, Tzung-Pei; Lin, Wen-Yang; Liu, Shu-Min; Lin, Jiann-Horng (2007-04-20). "Dynamically Adjusting Migration Rates for Multi-Population Genetic Algorithms". Journal of Advanced Computational Intelligence and Intelligent Informatics. 11 (4): 410–415. doi:10.20965/jaciii.2007.p0410. ISSN 1883-8014. https://www.fujipress.jp/jaciii/jc/jacii001100040410
Sarma, Jayshree; De Jong, Kenneth (1996), Voigt, Hans-Michael; Ebeling, Werner; Rechenberg, Ingo; Schwefel, Hans-Paul (eds.), "An analysis of the effects of neighborhood size and shape on local selection algorithms", Parallel Problem Solving from Nature — PPSN IV, vol. 1141, Berlin, Heidelberg: Springer, pp. 236–244, doi:10.1007/3-540-61723-x_988, ISBN 978-3-540-61723-5, retrieved 2024-12-16 978-3-540-61723-5
Gorges-Schleuter, Martina (1998), Eiben, Agoston E.; Bäck, Thomas; Schoenauer, Marc; Schwefel, Hans-Paul (eds.), "A comparative study of global and local selection in evolution strategies", Parallel Problem Solving from Nature — PPSN V, Lecture Notes in Computer Science, vol. 1498, Berlin, Heidelberg: Springer, pp. 367–377, doi:10.1007/bfb0056879, ISBN 978-3-540-65078-2, retrieved 2023-02-11 978-3-540-65078-2
Alba, Enrique; Troya, José Ma (2000), Schoenauer, Marc; Deb, Kalyanmoy; Rudolph, Günther; Yao, Xin (eds.), "Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio", Parallel Problem Solving from Nature PPSN VI, vol. 1917, Berlin, Heidelberg: Springer, pp. 29–38, doi:10.1007/3-540-45356-3_3, ISBN 978-3-540-41056-0, retrieved 2024-12-16 978-3-540-41056-0
Alba, Enrique; Dorronsoro, Bernabé (2008). Cellular genetic algorithms. Operations research/computer science interfaces series. New York: Springer. ISBN 978-0-387-77610-1. 978-0-387-77610-1
Cantú-Paz, Erik (1999). Efficient and Accurate Parallel Genetic Algorithms (PhD thesis, University of Illinois, Urbana-Champaign, USA). Genetic Algorithms and Evolutionary Computation. Vol. 1. Springer, New York, NY. doi:10.1007/978-1-4615-4369-5. ISBN 978-1-4613-6964-6. 978-1-4613-6964-6
Sudholt, Dirk (2015), Kacprzyk, Janusz; Pedrycz, Witold (eds.), "Parallel Evolutionary Algorithms" (PDF), Springer Handbook of Computational Intelligence, Berlin, Heidelberg: Springer, pp. 929–959, doi:10.1007/978-3-662-43505-2_46, ISBN 978-3-662-43504-5, retrieved 2023-02-13 978-3-662-43504-5
Luque, Gabriel; Alba, Enrique (2011). Parallel Genetic Algorithms. Studies in Computational Intelligence. Vol. 367. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-22084-5. ISBN 978-3-642-22083-8. 978-3-642-22083-8
Gorges-Schleuter, Martina (1991), Schwefel, Hans-Paul; Männer, Reinhard (eds.), "Explicit parallelism of genetic algorithms through population structures", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag, pp. 150–159, doi:10.1007/bfb0029746, ISBN 978-3-540-54148-6, retrieved 2022-12-15 978-3-540-54148-6
Jakob, Wilfried; Gorges-Schleuter, Martina; Blume, Christian (1992), Männer, Reinhard; Manderick, Bernard (eds.), "Application of Genetic Algorithms to Task Planning and Learning", Parallel Problem Solving from Nature, PPSN-II, Amsterdam: North Holland, pp. 293–302 https://www.researchgate.net/publication/220701664
Luque, Gabriel; Alba, Enrique; Dorronsoro, Bernabé (July 2009), "An asynchronous parallel implementation of a cellular genetic algorithm for combinatorial optimization", Proceedings of the 11th Annual conference on Genetic and evolutionary computation, Montreal Québec Canada: ACM, pp. 1395–1402, doi:10.1145/1569901.1570088, ISBN 978-1-60558-325-9, S2CID 14113702 978-1-60558-325-9
Zhongwen Luo; Hongzhi Liu (2006), "Cellular Genetic Algorithms and Local Search for 3-SAT problem on Graphic Hardware", 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada: IEEE, pp. 2988–2992, doi:10.1109/CEC.2006.1688685, ISBN 978-0-7803-9487-2, S2CID 8142372 978-0-7803-9487-2
Khalloof, Hatem; Mohammad, Mohammad; Shahoud, Shadi; Duepmeier, Clemens; Hagenmeyer, Veit (2020-11-02), "A Generic Flexible and Scalable Framework for Hierarchical Parallelization of Population-Based Metaheuristics", Proceedings of the 12th International Conference on Management of Digital EcoSystems, Virtual Event United Arab Emirates: ACM, pp. 124–131, doi:10.1145/3415958.3433041, ISBN 978-1-4503-8115-4, S2CID 227179748 978-1-4503-8115-4
Adar, N.; Kuvat, G. (2016). "Parallel Genetic Algorithms with Dynamic Topology using Cluster Computing". Advances in Electrical and Computer Engineering. 16 (3): 73–80. doi:10.4316/AECE.2016.03011. ISSN 1582-7445. http://www.aece.ro/abstractplus.php?year=2016&number=3&article=11
Cahon, S.; Melab, N.; Talbi, E.-G. (May 2004). "ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics". Journal of Heuristics. 10 (3): 357–380. doi:10.1023/B:HEUR.0000026900.92269.ec. ISSN 1381-1231. S2CID 14972999. http://link.springer.com/10.1023/B:HEUR.0000026900.92269.ec
Khalloof, Hatem; Mohammad, Mohammad; Shahoud, Shadi; Duepmeier, Clemens; Hagenmeyer, Veit (2020-11-02), "A Generic Flexible and Scalable Framework for Hierarchical Parallelization of Population-Based Metaheuristics", Proceedings of the 12th International Conference on Management of Digital EcoSystems, Virtual Event United Arab Emirates: ACM, pp. 124–131, doi:10.1145/3415958.3433041, ISBN 978-1-4503-8115-4, S2CID 227179748 978-1-4503-8115-4
Jähne, Paul (2016), Mayr, Heinrich Christian; Pinzger, Martin (eds.), "Overview of the current state of research on parallelisation of evolutionary algorithms on graphic cards" (PDF), Informatik 2016 Tagung vom 26. - 30. September 2016, Bonn: Gesellschaft für Informatik, FRG, ISBN 978-3-88579-653-4, OCLC 962381748 978-3-88579-653-4
García-Calvo, Raúl; Guisado, Jl; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco (January 2018). "Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks". Evolutionary Bioinformatics. 14. doi:10.1177/1176934318767889. ISSN 1176-9343. PMC 5898668. PMID 29662297. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898668
Lim, Dudy; Ong, Yew-Soon; Jin, Yaochu; Sendhoff, Bernhard; Lee, Bu-Sung (2007). "Efficient Hierarchical Parallel Genetic Algorithms using Grid computing". Future Generation Computer Systems. 23 (4): 658–670. doi:10.1016/j.future.2006.10.008. https://www.researchgate.net/publication/222914963