Some examples of statistics are:
In this case, "52%" is a statistic, namely the percentage of women in the survey sample who believe in global warming. The population is the set of all women in the United States, and the population parameter being estimated is the percentage of all women in the United States, not just those surveyed, who believe in global warming.
In this example, "5.6 days" is a statistic, namely the mean length of stay for our sample of 20 hotel guests. The population is the set of all guests of this hotel, and the population parameter being estimated is the mean length of stay for all guests.2 Whether the estimator is unbiased in this case depends upon the sample selection process; see the inspection paradox.
There are a variety of functions that are used to calculate statistics. Some include:
Statisticians often contemplate a parameterized family of probability distributions, any member of which could be the distribution of some measurable aspect of each member of a population, from which a sample is drawn randomly. For example, the parameter may be the average height of 25-year-old men in North America. The height of the members of a sample of 100 such men are measured; the average of those 100 numbers is a statistic. The average of the heights of all members of the population is not a statistic unless that has somehow also been ascertained (such as by measuring every member of the population). The average height that would be calculated using all of the individual heights of all 25-year-old North American men is a parameter, and not a statistic.
Important potential properties of statistics include completeness, consistency, sufficiency, unbiasedness, minimum mean square error, low variance, robustness, and computational convenience.
Information of a statistic on model parameters can be defined in several ways. The most common is the Fisher information, which is defined on the statistic model induced by the statistic. Kullback information measure can also be used.
Kokoska 2015, p. 296-308. - Kokoska, Stephen (2015). Introductory Statistics: A Problem-Solving Approach (2nd ed.). New York: W. H. Freeman and Company. ISBN 978-1-4641-1169-3. ↩
Kokoska 2015, p. 296-297. - Kokoska, Stephen (2015). Introductory Statistics: A Problem-Solving Approach (2nd ed.). New York: W. H. Freeman and Company. ISBN 978-1-4641-1169-3. ↩