A typical banded iron formation consists of repeated, thin layers (a few millimeters to a few centimeters in thickness) of silver to black iron oxides, either magnetite (Fe3O4) or hematite (Fe2O3), alternating with bands of iron-poor chert, often red in color, of similar thickness. A single banded iron formation can be up to several hundred meters in thickness and extend laterally for several hundred kilometers.
When used in the singular, the term banded iron formation refers to the sedimentary lithology just described. The plural form, banded iron formations, is used informally to refer to stratigraphic units that consist primarily of banded iron formation.
No classification scheme for banded iron formations has gained complete acceptance. In 1954, Harold Lloyd James advocated a classification based on four lithological facies (oxide, carbonate, silicate, and sulfide) assumed to represent different depths of deposition, but this speculative model did not hold up. In 1980, Gordon A. Gross advocated a twofold division of BIFs into an Algoma type and a Lake Superior type, based on the character of the depositional basin. Algoma BIFs are found in relatively small basins in association with greywackes and other volcanic rocks and are assumed to be associated with volcanic centers. Lake Superior BIFs are found in larger basins in association with black shales, quartzites, and dolomites, with relatively minor tuffs or other volcanic rocks, and are assumed to have formed on a continental shelf. This classification has been more widely accepted, but the failure to appreciate that it is strictly based on the characteristics of the depositional basin and not the lithology of the BIF itself has led to confusion, and some geologists have advocated for its abandonment. However, the classification into Algoma versus Lake Superior types continues to be used.
The most extensive banded iron formations belong to what A.F. Trendall calls the Great Gondwana BIFs. These are late Archean in age and are not associated with greenstone belts. They are relatively undeformed and form extensive topographic plateaus, such as the Hamersley Range. The banded iron formations here were deposited from 2470 to 2450 Ma and are the thickest and most extensive in the world, with a maximum thickness in excess of 900 meters (3,000 feet). Similar BIFs are found in the Carajás Formation of the Amazon craton, the Cauê Itabirite of the São Francisco craton, the Kuruman Iron Formation and Penge Iron Formation of South Africa, and the Mulaingiri Formation of India.
Neoproterozoic banded iron formations include the Urucum in Brazil, Rapitan in the Yukon, and the Damara Belt in southern Africa. They are relatively limited in size, with horizontal extents not more than a few tens of kilometers and thicknesses not more than about 10 meters (33 feet). These are widely thought to have been deposited under unusual anoxic oceanic conditions associated with the "Snowball Earth."
Cloud postulated that banded iron formations were a consequence of anoxic, iron-rich waters from the deep ocean welling up into a photic zone inhabited by cyanobacteria that had evolved the capacity to carry out oxygen-producing photosynthesis, but which had not yet evolved enzymes (such as superoxide dismutase) for living in an oxygenated environment. Such organisms would have been protected from their own oxygen waste through its rapid removal via the reservoir of reduced ferrous iron, Fe(II), in the early ocean. The oxygen released by photosynthesis oxidized the Fe(II) to ferric iron, Fe(III), which precipitated out of the sea water as insoluble iron oxides that settled to the ocean floor.
Cloud suggested that banding resulted from fluctuations in the population of cyanobacteria due to free radical damage by oxygen. This also explained the relatively limited extent of early Archean deposits. The great peak in BIF deposition at the end of the Archean was thought to be the result of the evolution of mechanisms for living with oxygen. This ended self-poisoning and produced a population explosion in the cyanobacteria that rapidly depleted the remaining supply of reduced iron and ended most BIF deposition. Oxygen then began to accumulate in the atmosphere.
Some details of Cloud's original model were abandoned. For example, improved dating of Precambrian strata has shown that the late Archean peak of BIF deposition was spread out over tens of millions of years, rather than taking place in a very short interval of time following the evolution of oxygen-coping mechanisms. However, his general concepts continue to shape thinking about the origins of banded iron formations. In particular, the concept of the upwelling of deep ocean water, rich in reduced iron, into an oxygenated surface layer poor in iron remains a key element of most theories of deposition.
Preston Cloud proposed that mesobanding was a result of self-poisoning by early cyanobacteria as the supply of reduced iron was periodically depleted. Mesobanding has also been interpreted as a secondary structure, not present in the sediments as originally laid down, but produced during compaction of the sediments. Another theory is that mesobands are primary structures resulting from pulses of activity along mid-ocean ridges that change the availability of reduced iron on time scales of decades. In the case of granular iron formations, the mesobands are attributed to winnowing of sediments in shallow water, in which wave action tended to segregate particles of different size and composition.
For banded iron formations to be deposited, several preconditions must be met.
There must be an ample source of reduced iron that can circulate freely into the deposition basin. Plausible sources of iron include hydrothermal vents along mid-ocean ridges, windblown dust, rivers, glacial ice, and seepage from continental margins.
The importance of various sources of reduced iron has likely changed dramatically across geologic time. This is reflected in the division of BIFs into Algoma and Lake Superior-type deposits. Algoma-type BIFs formed primarily in the Archean. These older BIFs tend to show a positive europium anomaly consistent with a hydrothermal source of iron. By contrast, Lake Superior-type banded iron formations primarily formed during the Paleoproterozoic era, and lack the europium anomalies of the older Algoma-type BIFs, suggesting a much greater input of iron weathered from continents.
The absence of hydrogen sulfide in anoxic ocean water can be explained either by reduced sulfur flux into the deep ocean or a lack of dissimilatory sulfate reduction (DSR), the process by which microorganisms use sulfate in place of oxygen for respiration. The product of DSR is hydrogen sulfide, which readily precipitates iron out of solution as pyrite.
The requirement of an anoxic, but not euxinic, deep ocean for deposition of banded iron formation suggests two models to explain the end of BIF deposition 1.8 billion years ago. The "Holland ocean" model proposes that the deep ocean became sufficiently oxygenated at that time to end transport of reduced iron. Heinrich Holland argues that the absence of manganese deposits during the pause between Paleoproterozoic and Neoproterozoic BIFs is evidence that the deep ocean had become at least slightly oxygenated. The "Canfield ocean" model proposes that, to the contrary, the deep ocean became euxinic and transport of reduced iron was blocked by precipitation as pyrite.
Although Cloud argued that microbial activity was a key process in the deposition of banded iron formation, the role of oxygenic versus anoxygenic photosynthesis continues to be debated, and nonbiogenic processes have also been proposed.
Cloud's original hypothesis was that ferrous iron was oxidized in a straightforward manner by molecular oxygen present in the water:
4 Fe2+ + O2 + 10 H2O → 4 Fe(OH)3 + 8 H+
The oxygen comes from the photosynthetic activities of cyanobacteria. Oxidation of ferrous iron may have been hastened by aerobic iron-oxidizing bacteria, which can increase rates of oxidation by a factor of 50 under conditions of low oxygen.
Oxygenic photosynthesis is not the only biogenic mechanism for deposition of banded iron formations. Some geochemists have suggested that banded iron formations could form by direct oxidation of iron by microbial anoxygenic phototrophs. The concentrations of phosphorus and trace metals in BIFs are consistent with precipitation through the activities of iron-oxidizing bacteria.
Iron isotope ratios in the oldest banded iron formations (3700-3800 Ma), at Isua, Greenland, are best explained by assuming extremely low oxygen levels (<0.001% of modern O2 levels in the photic zone) and anoxygenic photosynthetic oxidation of Fe(II):
4 Fe2+ + 11 H2O + CO2 + hv → CH2O + 4 Fe(OH)3 + 8 H+
This requires that dissimilatory iron reduction, the biological process in which microorganisms substitute Fe(III) for oxygen in respiration, was not yet widespread. By contrast, Lake Superior-type banded iron formations show iron isotope ratios that suggest that dissimilatory iron reduction expanded greatly during this period.
The lack of organic carbon in banded iron formation argues against microbial control of BIF deposition. On the other hand, there is fossil evidence for abundant photosynthesizing cyanobacteria at the start of BIF deposition and of hydrocarbon markers in shales within banded iron formation of the Pilbara craton. The carbon that is present in banded iron formations is enriched in the light isotope, 12C, an indicator of a biological origin. If a substantial part of the original iron oxides was in the form of hematite, then any carbon in the sediments might have been oxidized by the decarbonization reaction:
6 Fe2O3 + C ⇌ 4 Fe3O4 + CO2
Trendall and J.G. Blockley proposed, but later rejected, the hypothesis that banded iron formation might be a peculiar kind of Precambrian evaporite. Other proposed abiogenic processes include radiolysis by the radioactive isotope of potassium, 40K, or annual turnover of basin water combined with upwelling of iron-rich water in a stratified ocean.
Regardless of the precise mechanism of oxidation, the oxidation of ferrous to ferric iron likely caused the iron to precipitate out as a ferric hydroxide gel. Similarly, the silica component of the banded iron formations likely precipitated as a hydrous silica gel. The conversion of iron hydroxide and silica gels to banded iron formation is an example of diagenesis, the conversion of sediments into solid rock.
There is evidence that banded iron formations formed from sediments with nearly the same chemical composition as is found in the BIFs today. The BIFs of the Hamersley Range show great chemical homogeneity and lateral uniformity, with no indication of any precursor rock that might have been altered to the current composition. This suggests that, other than dehydration and decarbonization of the original ferric hydroxide and silica gels, diagenesis likely left the composition unaltered and consisted of crystallization of the original gels. Decarbonization may account for the lack of carbon and preponderance of magnetite in older banded iron formations. The relatively high content of hematite in Neoproterozoic BIFs suggests they were deposited very quickly and via a process that did not produce great quantities of biomass, so that little carbon was present to reduce hematite to magnetite.
However, it is possible that BIF was altered from carbonate rock or from hydrothermal mud during late stages of diagenesis. A 2018 study found no evidence that magnetite in BIF formed by decarbonization, and suggests that it formed from thermal decomposition of siderite via the reaction
3 FeCO3 + H2O → Fe3O4 + 3 CO2 + H2
The peak of deposition of banded iron formations in the late Archean, and the end of deposition in the Orosirian, have been interpreted as markers for the Great Oxygenation Event. Prior to 2.45 billion years ago, the high degree of mass-independent fractionation of sulfur (MIF-S) indicates an extremely oxygen-poor atmosphere. The peak of banded iron formation deposition coincides with the disappearance of the MIF-S signal, which is interpreted as the permanent appearance of oxygen in the atmosphere between 2.41 and 2.35 billion years ago. This was accompanied by the development of a stratified ocean with a deep anoxic layer and a shallow oxidized layer. The end of deposition of BIF at 1.85 billion years ago is attributed to the oxidation of the deep ocean.
Until 1992 it was assumed that the rare, later (younger) banded iron deposits represented unusual conditions where oxygen was depleted locally. Iron-rich waters would then form in isolation and subsequently come into contact with oxygenated water. The Snowball Earth hypothesis provided an alternative explanation for these younger deposits. In a Snowball Earth state the continents, and possibly seas at low latitudes, were subject to a severe ice age circa 750 to 580 Ma that nearly or totally depleted free oxygen. Dissolved iron then accumulated in the oxygen-poor oceans (possibly from seafloor hydrothermal vents). Following the thawing of the Earth, the seas became oxygenated once more causing the precipitation of the iron. Banded iron formations of this period are predominantly associated with the Sturtian glaciation.
An alternative mechanism for banded iron formations in the Snowball Earth era suggests the iron was deposited from metal-rich brines in the vicinity of hydrothermally active rift zones due to glacially-driven thermal overturn. The limited extent of these BIFs compared with the associated glacial deposits, their association with volcanic formations, and variation in thickness and facies favor this hypothesis. Such a mode of formation does not require a global anoxic ocean, but is consistent with either a Snowball Earth or Slushball Earth model.
Different mining districts coined their own names for BIFs. The term "banded iron formation" was coined in the iron districts of Lake Superior, where the ore deposits of the Mesabi, Marquette, Cuyuna, Gogebic, and Menominee iron ranges were also variously known as "jasper", "jaspilite", "iron-bearing formation", or taconite. Banded iron formations were described as "itabarite" in Brazil, as "ironstone" in South Africa, and as "BHQ" (banded hematite quartzite) in India.
The Itabarite banded iron formations of Brazil cover at least 80,000 square kilometers (31,000 square miles) and are up to 600 meters (2,000 feet) thick. These form the Quadrilatero Ferrifero or Iron Quadrangle, which resembles the Iron Range mines of United States in that the favored ore is hematite weathered out of the BIFs. Production from the Iron Quadrangle helps make Brazil the second largest producer of iron ore after Australia, with monthly exports averaging 139,299 t (137,099 long tons; 153,551 short tons) from December 2007 to May 2018.
James, Harold Lloyd (1 May 1954). "Sedimentary facies of iron-formation". Economic Geology. 49 (3): 235–293. Bibcode:1954EcGeo..49..235J. doi:10.2113/gsecongeo.49.3.235. /wiki/Bibcode_(identifier)
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Katsuta N, Shimizu I, Helmstaedt H, Takano M, Kawakami S, Kumazawa M (June 2012). "Major element distribution in Archean banded iron formation (BIF): influence of metamorphic differentiation". Journal of Metamorphic Geology. 30 (5): 457–472. Bibcode:2012JMetG..30..457K. doi:10.1111/j.1525-1314.2012.00975.x. S2CID 129322335. /wiki/Bibcode_(identifier)
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A. (2005). "Banded iron formations". Encyclopedia of Geology. Elsevier. pp. 37–42.
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Gole, Martin J.; Klein, Cornelis (March 1981). "Banded Iron-Formations through Much of Precambrian Time". The Journal of Geology. 89 (2): 169–183. Bibcode:1981JG.....89..169G. doi:10.1086/628578. S2CID 140701897. /wiki/Bibcode_(identifier)
Klein, C. (1 October 2005). "Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins". American Mineralogist. 90 (10): 1473–1499. Bibcode:2005AmMin..90.1473K. doi:10.2138/am.2005.1871. S2CID 201124189. /wiki/Bibcode_(identifier)
James, Harold Lloyd (1 May 1954). "Sedimentary facies of iron-formation". Economic Geology. 49 (3): 235–293. Bibcode:1954EcGeo..49..235J. doi:10.2113/gsecongeo.49.3.235. /wiki/Bibcode_(identifier)
Examples of this usage are found in Gole and Klein 1981; Klein 2005; Trendall 2005; and Zhu et al. 2014.
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Gole, Martin J.; Klein, Cornelis (March 1981). "Banded Iron-Formations through Much of Precambrian Time". The Journal of Geology. 89 (2): 169–183. Bibcode:1981JG.....89..169G. doi:10.1086/628578. S2CID 140701897. /wiki/Bibcode_(identifier)
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Gole, Martin J.; Klein, Cornelis (March 1981). "Banded Iron-Formations through Much of Precambrian Time". The Journal of Geology. 89 (2): 169–183. Bibcode:1981JG.....89..169G. doi:10.1086/628578. S2CID 140701897. /wiki/Bibcode_(identifier)
Klein, C. (1 October 2005). "Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins". American Mineralogist. 90 (10): 1473–1499. Bibcode:2005AmMin..90.1473K. doi:10.2138/am.2005.1871. S2CID 201124189. /wiki/Bibcode_(identifier)
Ilyin, A. V. (9 January 2009). "Neoproterozoic banded iron formations". Lithology and Mineral Resources. 44 (1): 78–86. doi:10.1134/S0024490209010064. S2CID 129978001. /wiki/Doi_(identifier)
Bekker, A; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. (May 2010). "Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes" (PDF). Economic Geology. 105 (3): 467–508. Bibcode:2010EcGeo.105..467B. CiteSeerX 10.1.1.717.4846. doi:10.2113/gsecongeo.105.3.467. http://faculty.eas.ualberta.ca/konhauser/Reprints/EconomicGeology-AB%282010%29.pdf
Abd El-Rahman, Yasser; Gutzmer, Jens; Li, Xian-Hua; Seifert, Thomas; Li, Chao-Feng; Ling, Xiao-Xiao; Li, Jiao (6 June 2019). "Not all Neoproterozoic iron formations are glaciogenic: Sturtian-aged non-Rapitan exhalative iron formations from the Arabian–Nubian Shield". Mineralium Deposita. 55 (3): 577–596. Bibcode:2019MinDe..55..577A. doi:10.1007/s00126-019-00898-0. S2CID 189829154. /wiki/Bibcode_(identifier)
Klein, C. (1 October 2005). "Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins". American Mineralogist. 90 (10): 1473–1499. Bibcode:2005AmMin..90.1473K. doi:10.2138/am.2005.1871. S2CID 201124189. /wiki/Bibcode_(identifier)
Ilyin, A. V. (9 January 2009). "Neoproterozoic banded iron formations". Lithology and Mineral Resources. 44 (1): 78–86. doi:10.1134/S0024490209010064. S2CID 129978001. /wiki/Doi_(identifier)
Ilyin, A. V. (9 January 2009). "Neoproterozoic banded iron formations". Lithology and Mineral Resources. 44 (1): 78–86. doi:10.1134/S0024490209010064. S2CID 129978001. /wiki/Doi_(identifier)
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Stern, Robert J.; Mukherjee, Sumit K.; Miller, Nathan R.; Ali, Kamal; Johnson, Peter R. (December 2013). "~750Ma banded iron formation from the Arabian-Nubian Shield—Implications for understanding neoproterozoic tectonics, volcanism, and climate change". Precambrian Research. 239: 79–94. Bibcode:2013PreR..239...79S. doi:10.1016/j.precamres.2013.07.015. /wiki/Bibcode_(identifier)
Klein, C. (1 October 2005). "Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins". American Mineralogist. 90 (10): 1473–1499. Bibcode:2005AmMin..90.1473K. doi:10.2138/am.2005.1871. S2CID 201124189. /wiki/Bibcode_(identifier)
Ilyin, A. V. (9 January 2009). "Neoproterozoic banded iron formations". Lithology and Mineral Resources. 44 (1): 78–86. doi:10.1134/S0024490209010064. S2CID 129978001. /wiki/Doi_(identifier)
Stern, Robert J.; Mukherjee, Sumit K.; Miller, Nathan R.; Ali, Kamal; Johnson, Peter R. (December 2013). "~750Ma banded iron formation from the Arabian-Nubian Shield—Implications for understanding neoproterozoic tectonics, volcanism, and climate change". Precambrian Research. 239: 79–94. Bibcode:2013PreR..239...79S. doi:10.1016/j.precamres.2013.07.015. /wiki/Bibcode_(identifier)
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Gaucher, Cladio; Sial, Alcides N.; Frei, Robert (2015). "Chapter 17 - Chemostratigraphy of Neoproterozoic Banded Iron Formation (BIF): Types, Age and Origin". Chapter 17: Chemostratigraphy of Neoproterozoic Banded Iron Formation (BIF): Types, Age and Origin. Chemostratigraphy: Concepts, Techniques, and Applications. pp. 433–449. doi:10.1016/B978-0-12-419968-2.00017-0. ISBN 9780124199682. Retrieved 22 June 2020. 9780124199682
Li, Zhi-Quan; Zhang, Lian-Chang; Xue, Chun-Ji; Zheng, Meng-Tian; Zhu, Ming-Tian; Robbins, Leslie J.; Slack, John F.; Planavsky, Noah J.; Konhauser, Kurt O. (2 July 2018). "Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean". Scientific Reports. 8 (1): 9970. Bibcode:2018NatSR...8.9970L. doi:10.1038/s41598-018-28187-2. PMC 6028650. PMID 29967405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028650
Bekker, A; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. (May 2010). "Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes" (PDF). Economic Geology. 105 (3): 467–508. Bibcode:2010EcGeo.105..467B. CiteSeerX 10.1.1.717.4846. doi:10.2113/gsecongeo.105.3.467. http://faculty.eas.ualberta.ca/konhauser/Reprints/EconomicGeology-AB%282010%29.pdf
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
James, Harold Lloyd (1 May 1954). "Sedimentary facies of iron-formation". Economic Geology. 49 (3): 235–293. Bibcode:1954EcGeo..49..235J. doi:10.2113/gsecongeo.49.3.235. /wiki/Bibcode_(identifier)
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Gross, G.A. (1980). "A classification of iron formations based on depositional environments". The Canadian Mineralogist. 18: 215–222.
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Ohmoto, H. (2004). "The Archean atmosphere, hydrosphere, and biosphere". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. 5.2. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Taner, Mehmet F.; Chemam, Madjid (October 2015). "Algoma-type banded iron formation (BIF), Abitibi Greenstone belt, Quebec, Canada". Ore Geology Reviews. 70: 31–46. Bibcode:2015OGRv...70...31T. doi:10.1016/j.oregeorev.2015.03.016. https://doi.org/10.1016%2Fj.oregeorev.2015.03.016
Gourcerol, B.; Thurston, P.C.; Kontak, D.J.; Côté-Mantha, O.; Biczok, J. (1 August 2016). "Depositional setting of Algoma-type banded iron formation" (PDF). Precambrian Research. 281: 47–79. Bibcode:2016PreR..281...47G. doi:10.1016/j.precamres.2016.04.019. ISSN 0301-9268. https://hal-brgm.archives-ouvertes.fr/hal-02283951/file/proof.pdf
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Li, Zhi-Quan; Zhang, Lian-Chang; Xue, Chun-Ji; Zheng, Meng-Tian; Zhu, Ming-Tian; Robbins, Leslie J.; Slack, John F.; Planavsky, Noah J.; Konhauser, Kurt O. (2 July 2018). "Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean". Scientific Reports. 8 (1): 9970. Bibcode:2018NatSR...8.9970L. doi:10.1038/s41598-018-28187-2. PMC 6028650. PMID 29967405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028650
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang; Moorbath, Stephen (February 2013). "Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland)". Earth and Planetary Science Letters. 363: 192–203. Bibcode:2013E&PSL.363..192C. doi:10.1016/j.epsl.2012.12.025. /wiki/Bibcode_(identifier)
Alexander, D.R. (21 November 1977). "Geological and electromagnetic (VLP) surveys on part of Strathy-Cassels Group". Timmins, Ontario: Hollinger Mines Limited: 3, 4, 9. AFRI 31M04SW0091. {{cite journal}}: Cite journal requires |journal= (help) /wiki/Timmins
"Ontario banded iron formation". American Museum of Natural History. Retrieved 17 June 2020. https://www.amnh.org/exhibitions/permanent/planet-earth/how-has-the-earth-evolved/a-special-planet/how-do-we-know-about-the-early-atmosphere/ontario-banded-iron-formation
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
MacLeod, W. N. (1966) The geology and iron deposits of the Hamersley Range area. Bulletin Archived 4 March 2016 at the Wayback Machine (Geological Survey of Western Australia), No. 117 http://henrietta.liswa.wa.gov.au/record=b2251313~S2
"Geology". Rio Tinto Iron Ore. Archived from the original on 23 October 2012. Retrieved 7 August 2012. https://web.archive.org/web/20121023034150/http://www.riotintoironore.com/ENG/operations/497_geology.asp
"Iron 2002 – Key Iron Deposits of the World – Module 1, Australia". Porter GeoConsultancy. 18 September 2002. Archived from the original on 8 March 2022. Retrieved 7 August 2012. https://web.archive.org/web/20220308052511/http://www.portergeo.com.au/tours/iron2002/iron2002depm1.asp
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
"Banded Iron Formation". Western Australian Museum. Retrieved 17 June 2020. http://museum.wa.gov.au/research/collections/earth-and-planetary-sciences/rock-collection/banded-iron-formation
Gole, Martin J.; Klein, Cornelis (March 1981). "Banded Iron-Formations through Much of Precambrian Time". The Journal of Geology. 89 (2): 169–183. Bibcode:1981JG.....89..169G. doi:10.1086/628578. S2CID 140701897. /wiki/Bibcode_(identifier)
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A. F (1968). "Three Great Basins of Precambrian Banded Iron Formation Deposition: A Systematic Comparison". Geological Society of America Bulletin. 79 (11): 1527. Bibcode:1968GSAB...79.1527T. doi:10.1130/0016-7606(1968)79[1527:TGBOPB]2.0.CO;2. /wiki/Bibcode_(identifier)
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Ilyin, A. V. (9 January 2009). "Neoproterozoic banded iron formations". Lithology and Mineral Resources. 44 (1): 78–86. doi:10.1134/S0024490209010064. S2CID 129978001. /wiki/Doi_(identifier)
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Cloud, P. (1973). "Paleoecological Significance of the Banded Iron-Formation". Economic Geology. 68 (7): 1135–1143. Bibcode:1973EcGeo..68.1135C. doi:10.2113/gsecongeo.68.7.1135. /wiki/Preston_Cloud
Holland, Heinrich D (19 May 2006). "The oxygenation of the atmosphere and oceans". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838. PMC 1578726. PMID 16754606. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578726
Cloud, Preston E. (1968). "Atmospheric and Hydrospheric Evolution on the Primitive Earth". Science. 160 (3829): 729–736. Bibcode:1968Sci...160..729C. doi:10.1126/science.160.3829.729. JSTOR 1724303. PMID 5646415. /wiki/Bibcode_(identifier)
Ohmoto, H.; Watanabe, Y.; Yamaguchi, K.E.; Naraoka, H.; Haruna, M.; Kakegawa, T.; Hayashi, K.; Kato, Y. (2006). "Chemical and biological evolution of early Earth: Constraints from banded iron formations". Geological Society of America Memoir. 198: 291–331. doi:10.1130/2006.1198(17). ISBN 9780813711980. Retrieved 19 June 2020. 9780813711980
Lascelles, Desmond Fitzgerald (2017). Banded iron formations, to iron ore : an integrated genesis model. Nova Science Publishers. ISBN 978-1536109719. 978-1536109719
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Cloud, Preston E. (1968). "Atmospheric and Hydrospheric Evolution on the Primitive Earth". Science. 160 (3829): 729–736. Bibcode:1968Sci...160..729C. doi:10.1126/science.160.3829.729. JSTOR 1724303. PMID 5646415. /wiki/Bibcode_(identifier)
Cloud, P. (1973). "Paleoecological Significance of the Banded Iron-Formation". Economic Geology. 68 (7): 1135–1143. Bibcode:1973EcGeo..68.1135C. doi:10.2113/gsecongeo.68.7.1135. /wiki/Preston_Cloud
Cloud, Preston E. (1968). "Atmospheric and Hydrospheric Evolution on the Primitive Earth". Science. 160 (3829): 729–736. Bibcode:1968Sci...160..729C. doi:10.1126/science.160.3829.729. JSTOR 1724303. PMID 5646415. /wiki/Bibcode_(identifier)
Cloud, P. (1973). "Paleoecological Significance of the Banded Iron-Formation". Economic Geology. 68 (7): 1135–1143. Bibcode:1973EcGeo..68.1135C. doi:10.2113/gsecongeo.68.7.1135. /wiki/Preston_Cloud
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Simonson, Bruce M.; Hassler, Scott W. (November 1996). "Was the Deposition of Large Precambrian Iron Formations Linked to Major Marine Transgressions?". The Journal of Geology. 104 (6): 665–676. Bibcode:1996JG....104..665S. doi:10.1086/629861. S2CID 128886898. /wiki/Bruce_Simonson
Slack, J.F.; Cannon, W.F. (2009). "Extraterrestrial demise of banded iron formations 1.85 billion years ago". Geology. 37 (11): 1011–1014. Bibcode:2009Geo....37.1011S. doi:10.1130/G30259A.1. /wiki/Bibcode_(identifier)
Lyons, T.W.; Reinhard, C.T. (September 2009). "Early Earth: Oxygen for heavy-metal fans". Nature. 461 (7261): 179–81. Bibcode:2009Natur.461..179L. doi:10.1038/461179a. PMID 19741692. S2CID 205049360. https://doi.org/10.1038%2F461179a
Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. (August 1998). "A neoproterozoic snowball earth" (PDF). Science. 281 (5381): 1342–6. Bibcode:1998Sci...281.1342H. doi:10.1126/science.281.5381.1342. PMID 9721097. S2CID 13046760. http://marine.rutgers.edu/ebme/HistoryEarthSystems/HistEarthSystems_Fall2008/Week6a/Hoffman_et_al_Science_1998.pdf
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Cloud, P. (1973). "Paleoecological Significance of the Banded Iron-Formation". Economic Geology. 68 (7): 1135–1143. Bibcode:1973EcGeo..68.1135C. doi:10.2113/gsecongeo.68.7.1135. /wiki/Preston_Cloud
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Morris, R.C.; Horwitz, R.C. (August 1983). "The origin of the iron-formation-rich Hamersley Group of Western Australia — deposition on a platform". Precambrian Research. 21 (3–4): 273–297. Bibcode:1983PreR...21..273M. doi:10.1016/0301-9268(83)90044-X. /wiki/Bibcode_(identifier)
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J (2014). "The chemistry of hydrothermal magnetite: A review". Ore Geology Reviews. 61: 1–32. Bibcode:2014OGRv...61....1N. doi:10.1016/j.oregeorev.2013.12.013. /wiki/Bibcode_(identifier)
Zhu, X.Q.; Tang, H.S.; Sun, X.H. (2014). "Genesis of banded iron formations: A series of experimental simulations". Ore Geology Reviews. 63: 465–469. Bibcode:2014OGRv...63..465Z. doi:10.1016/j.oregeorev.2014.03.009. /wiki/Bibcode_(identifier)
Li, L.X.; Li, H.M.; Xu, Y.X.; Chen, J.; Yao, T.; Zhang, L.F.; Yang, X.Q.; Liu, M.J. (2015). "Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei Province, China: Timing of BIF deposition and anatexis". Journal of Asian Earth Sciences. 113: 1017–1034. Bibcode:2015JAESc.113.1017L. doi:10.1016/j.jseaes.2015.02.007. /wiki/Bibcode_(identifier)
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Klein, C. (1 October 2005). "Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins". American Mineralogist. 90 (10): 1473–1499. Bibcode:2005AmMin..90.1473K. doi:10.2138/am.2005.1871. S2CID 201124189. /wiki/Bibcode_(identifier)
Li, Weiqiang; Beard, Brian L.; Johnson, Clark M. (7 July 2015). "Biologically recycled continental iron is a major component in banded iron formations". Proceedings of the National Academy of Sciences. 112 (27): 8193–8198. Bibcode:2015PNAS..112.8193L. doi:10.1073/pnas.1505515112. PMC 4500253. PMID 26109570. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500253
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Holland, Heinrich D (19 May 2006). "The oxygenation of the atmosphere and oceans". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838. PMC 1578726. PMID 16754606. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578726
Holland, Heinrich D (19 May 2006). "The oxygenation of the atmosphere and oceans". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838. PMC 1578726. PMID 16754606. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578726
Slack, J.F.; Cannon, W.F. (2009). "Extraterrestrial demise of banded iron formations 1.85 billion years ago". Geology. 37 (11): 1011–1014. Bibcode:2009Geo....37.1011S. doi:10.1130/G30259A.1. /wiki/Bibcode_(identifier)
Cloud, P. (1973). "Paleoecological Significance of the Banded Iron-Formation". Economic Geology. 68 (7): 1135–1143. Bibcode:1973EcGeo..68.1135C. doi:10.2113/gsecongeo.68.7.1135. /wiki/Preston_Cloud
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Kappler, A.; Pasquero, C.; Konhauser, K.O.; Newman, D.K. (November 2005). "Deposition of banded iron formations by anoxygenic phototrophic Fe (II)-oxidizing bacteria" (PDF). Geology. 33 (11): 865–8. Bibcode:2005Geo....33..865K. doi:10.1130/G21658.1. Archived from the original (PDF) on 16 December 2008. https://web.archive.org/web/20081216220557/http://www.ess.uci.edu/~cpasquer/papers/kappleretal_GEO2005.pdf
Konhauser, Kurt O.; Hamade, Tristan; Raiswell, Rob; Morris, Richard C.; Grant Ferris, F.; Southam, Gordon; Canfield, Donald E. (2002). "Could bacteria have formed the Precambrian banded iron formations?". Geology. 30 (12): 1079. Bibcode:2002Geo....30.1079K. doi:10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2. /wiki/Bibcode_(identifier)
Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang; Moorbath, Stephen (February 2013). "Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland)". Earth and Planetary Science Letters. 363: 192–203. Bibcode:2013E&PSL.363..192C. doi:10.1016/j.epsl.2012.12.025. /wiki/Bibcode_(identifier)
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang; Moorbath, Stephen (February 2013). "Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland)". Earth and Planetary Science Letters. 363: 192–203. Bibcode:2013E&PSL.363..192C. doi:10.1016/j.epsl.2012.12.025. /wiki/Bibcode_(identifier)
Johnson, Clark M.; Beard, Brian L.; Klein, Cornelis; Beukes, Nic J.; Roden, Eric E. (January 2008). "Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis". Geochimica et Cosmochimica Acta. 72 (1): 151–169. Bibcode:2008GeCoA..72..151J. doi:10.1016/j.gca.2007.10.013. /wiki/Bibcode_(identifier)
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Klein, Cornelis; Beukes, Nicolas J. (1 November 1989). "Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa". Economic Geology. 84 (7): 1733–1774. Bibcode:1989EcGeo..84.1733K. doi:10.2113/gsecongeo.84.7.1733. /wiki/Bibcode_(identifier)
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Brocks, J. J.; Logan, Graham A.; Buick, Roger; Summons, Roger E. (13 August 1999). "Archean Molecular Fossils and the Early Rise of Eukaryotes". Science. 285 (5430): 1033–1036. Bibcode:1999Sci...285.1033B. doi:10.1126/science.285.5430.1033. PMID 10446042. /wiki/Bibcode_(identifier)
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Draganić, I.G.; Bjergbakke, E.; Draganić, Z.D.; Sehested, K. (August 1991). "Decomposition of ocean waters by potassium-40 radiation 3800 Ma ago as a source of oxygen and oxidizing species". Precambrian Research. 52 (3–4): 337–345. Bibcode:1991PreR...52..337D. doi:10.1016/0301-9268(91)90087-Q. /wiki/Bibcode_(identifier)
Klein, Cornelis; Beukes, Nicolas J. (1 November 1989). "Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa". Economic Geology. 84 (7): 1733–1774. Bibcode:1989EcGeo..84.1733K. doi:10.2113/gsecongeo.84.7.1733. /wiki/Bibcode_(identifier)
Braterman, Paul S.; Cairns-Smith, A. Graham; Sloper, Robert W. (May 1983). "Photo-oxidation of hydrated Fe2+—significance for banded iron formations". Nature. 303 (5913): 163–164. Bibcode:1983Natur.303..163B. doi:10.1038/303163a0. S2CID 4357551. /wiki/Paul_Braterman
Braterman, Paul S.; Cairns-Smith, A. Graham (September 1987). "Photoprecipitation and the banded iron-formations — Some quantitative aspects". Origins of Life and Evolution of the Biosphere. 17 (3–4): 221–228. Bibcode:1987OrLi...17..221B. doi:10.1007/BF02386463. S2CID 33140490. /wiki/Bibcode_(identifier)
Konhauser, Kurt O.; Amskold, Larry; Lalonde, Stefan V.; Posth, Nicole R.; Kappler, Andreas; Anbar, Ariel (15 June 2007). "Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition". Earth and Planetary Science Letters. 258 (1–2): 87–100. Bibcode:2007E&PSL.258...87K. doi:10.1016/j.epsl.2007.03.026. Retrieved 23 June 2020. https://www.sciencedirect.com/science/article/abs/pii/S0012821X07001823
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Trendall, A.F. (2002). "The significance of iron-formation in the Precambrian stratigraphic record". In Altermann, Wladyslaw; Corcoran, Patricia L. (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Blackwell Science Ltd. pp. 33–36. ISBN 0-632-06415-3. 0-632-06415-3
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Kimberley, M. M. (July 1974). "Origin of iron ore by diagenetic replacement of calcareous oolite". Nature. 250 (5464): 319–320. Bibcode:1974Natur.250..319K. doi:10.1038/250319a0. S2CID 4211912. /wiki/Bibcode_(identifier)
Krapez, B.; Barley, M.E.; Pickard, A.L. (2001). "Banded iron formations: ambient pelagites, hydrothermal muds or metamorphic rocks?". Extended Abstracts 4th International Archaean Symposium: 247–248.
Rasmussen, Birger; Muhling, Janet R. (March 2018). "Making magnetite late again: Evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations". Precambrian Research. 306: 64–93. Bibcode:2018PreR..306...64R. doi:10.1016/j.precamres.2017.12.017. /wiki/Bibcode_(identifier)
Holland, Heinrich D (19 May 2006). "The oxygenation of the atmosphere and oceans". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838. PMC 1578726. PMID 16754606. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578726
Kirschvink J (1992). "Late Proterozoic low-latitude global glaciation: the Snowball Earth". In Schopf JW, Klein C (eds.). The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press. /wiki/Joseph_Kirschvink
Cheilletz, Alain; Gasquet, Dominique; Mouttaqi, Abdellah; Annich, Mohammed; El Hakour, Abdelkhalek (2006). "Discovery of Neoproterozoic banded iron formation (BIF) in Morocco" (PDF). Geophysical Research Abstracts. 8. Retrieved 23 June 2020. https://meetings.copernicus.org/www.cosis.net/abstracts/EGU06/04635/EGU06-J-04635.pdf
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
Stern, R.J.; Avigad, D.; Miller, N.R.; Beyth, M. (January 2006). "Evidence for the Snowball Earth hypothesis in the Arabian-Nubian Shield and the East African Orogen" (PDF). Journal of African Earth Sciences. 44 (1): 1–20. Bibcode:2006JAfES..44....1S. doi:10.1016/j.jafrearsci.2005.10.003. Retrieved 23 June 2020. https://personal.utdallas.edu/~rjstern/pdfs/Snowball.JAES06.pdf
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Eyles, N.; Januszczak, N (2004). "Zipper-rift': A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma" (PDF). Earth-Science Reviews. 65 (1–2): 1–73. Bibcode:2004ESRv...65....1E. doi:10.1016/S0012-8252(03)00080-1. Archived from the original (PDF) on 28 November 2007. https://web.archive.org/web/20071128105306/http://courses.eas.ualberta.ca/eas457/Eyles_2004.pdf
Young, Grant M. (November 2002). "Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate". Journal of African Earth Sciences. 35 (4): 451–466. Bibcode:2002JAfES..35..451Y. doi:10.1016/S0899-5362(02)00158-6. /wiki/Bibcode_(identifier)
Stern, R.J.; Avigad, D.; Miller, N.R.; Beyth, M. (January 2006). "Evidence for the Snowball Earth hypothesis in the Arabian-Nubian Shield and the East African Orogen" (PDF). Journal of African Earth Sciences. 44 (1): 1–20. Bibcode:2006JAfES..44....1S. doi:10.1016/j.jafrearsci.2005.10.003. Retrieved 23 June 2020. https://personal.utdallas.edu/~rjstern/pdfs/Snowball.JAES06.pdf
Young, Grant M. (November 2002). "Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate". Journal of African Earth Sciences. 35 (4): 451–466. Bibcode:2002JAfES..35..451Y. doi:10.1016/S0899-5362(02)00158-6. /wiki/Bibcode_(identifier)
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Straus, Justin V. (2013). "Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" (PDF). Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232C. doi:10.1016/j.chemgeo.2013.08.002. S2CID 56300363. Retrieved 23 June 2020. https://francismacdonald.fas.harvard.edu/files/fmacdonald/files/cox_2013_chemgeo_bifs.pdf
Trendall, A. (2005). "Banded iron formations". Encyclopedia of Geology. Elsevier. pp. 37–42.
Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J (2014). "The chemistry of hydrothermal magnetite: A review". Ore Geology Reviews. 61: 1–32. Bibcode:2014OGRv...61....1N. doi:10.1016/j.oregeorev.2013.12.013. /wiki/Bibcode_(identifier)
Zhu, X.Q.; Tang, H.S.; Sun, X.H. (2014). "Genesis of banded iron formations: A series of experimental simulations". Ore Geology Reviews. 63: 465–469. Bibcode:2014OGRv...63..465Z. doi:10.1016/j.oregeorev.2014.03.009. /wiki/Bibcode_(identifier)
Trendall, A. (2005). "Banded iron formations". Encyclopedia of Geology. Elsevier. pp. 37–42.
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
"Explore Minnesota: Iron Ore" (PDF). Minnesota Minerals Coordinating Council. Retrieved 18 June 2020. http://files.dnr.state.mn.us/lands_minerals/mcc_docs/2016_explore_iron_ore.pdf
Marsden, Ralph (1968). John D. Ridge (ed.). Geology of the Iron Ores of the Lake Superior Region in the United States, in Volume 1 of Ore Deposits of the United States, 1933–1967. The American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc. pp. 490–492.
"Explore Minnesota: Iron Ore" (PDF). Minnesota Minerals Coordinating Council. Retrieved 18 June 2020. http://files.dnr.state.mn.us/lands_minerals/mcc_docs/2016_explore_iron_ore.pdf
"Taconite". Minnesota Department of Natural Resources. Retrieved 10 October 2020. https://www.dnr.state.mn.us/education/geology/digging/taconite.html
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0. ISBN 9780444515063. 9780444515063
MacLeod, W. N. (1966) The geology and iron deposits of the Hamersley Range area. Bulletin Archived 4 March 2016 at the Wayback Machine (Geological Survey of Western Australia), No. 117 http://henrietta.liswa.wa.gov.au/record=b2251313~S2
"Geology". Rio Tinto Iron Ore. Archived from the original on 23 October 2012. Retrieved 7 August 2012. https://web.archive.org/web/20121023034150/http://www.riotintoironore.com/ENG/operations/497_geology.asp
"Iron 2002 – Key Iron Deposits of the World – Module 1, Australia". Porter GeoConsultancy. 18 September 2002. Archived from the original on 8 March 2022. Retrieved 7 August 2012. https://web.archive.org/web/20220308052511/http://www.portergeo.com.au/tours/iron2002/iron2002depm1.asp
Condie, Kent C. (2015). Earth as an evolving planetary system (3 ed.). Academic Press. ISBN 9780128036891. 9780128036891
"Banded Iron Formation". Western Australian Museum. Retrieved 17 June 2020. http://museum.wa.gov.au/research/collections/earth-and-planetary-sciences/rock-collection/banded-iron-formation
"Banded Iron Formation". Western Australian Museum. Retrieved 17 June 2020. http://museum.wa.gov.au/research/collections/earth-and-planetary-sciences/rock-collection/banded-iron-formation
"Iron Fact Sheet". Geoscience Australia. 15 May 2014. Archived from the original on 18 February 2017. Retrieved 10 October 2020. https://web.archive.org/web/20170218005217/http://www.australianminesatlas.gov.au/education/fact_sheets/iron.html
"Mining". Rio Tinto Iron Ore. 2010. Archived from the original on 12 June 2010. Retrieved 6 November 2011. https://web.archive.org/web/20100612111105/http://www.riotintoironore.com/ENG/operations/497_mining.asp
Gole, Martin J.; Klein, Cornelis (March 1981). "Banded Iron-Formations through Much of Precambrian Time". The Journal of Geology. 89 (2): 169–183. Bibcode:1981JG.....89..169G. doi:10.1086/628578. S2CID 140701897. /wiki/Bibcode_(identifier)
"Minas Itabirito Complex". Mining Data Solutions. MDO Data Online Inc. Retrieved 22 June 2020. https://miningdataonline.com/property/1364/Minas-Itabirito-Complex.aspx
"Brazil Iron Ore Exports: By Port". CEIC Data. Retrieved 16 February 2019. https://www.ceicdata.com/en/brazil/iron-ore-exports-by-port
Beasley, W.G. (1991). Japanese Imperialism 1894–1945. Oxford University Press. ISBN 0-19-822168-1. 0-19-822168-1
Huang, Youyi; Xiao Siaoming; Li Zhenguo; Zhang Zouku (2006). Liaoning, Home of the Manchus & Cradle of Qing Empire. Foreign Languages Press, Beijing. p. 227. ISBN 7-119-04517-2. 7-119-04517-2