By the late 1980s and early 1990s, improvements in STEM technology allowed for samples to be imaged with better than 2 Å resolution, meaning that atomic structure could be imaged in some materials.
The addition of an aberration corrector to STEMs enables electron probes to be focused to sub-angstrom diameters, allowing images with sub-angstrom resolution to be acquired. This has made it possible to identify individual atomic columns with unprecedented clarity.
Aberration-corrected STEM was demonstrated with 1.9 Å resolution in 1997 and soon after in 2000 with roughly 1.36 Å resolution. Advanced aberration-corrected STEMs have since been developed with sub-50 pm resolution.
Aberration-corrected STEM provides the added resolution and beam current critical to the implementation of atomic resolution chemical and elemental spectroscopic mapping.
In annular dark-field mode, images are formed by fore-scattered electrons incident on an annular detector, which lies outside of the path of the directly transmitted beam.
By using a high-angle ADF detector, it is possible to form atomic resolution images where the contrast of an atomic column is directly related to the atomic number (Z-contrast image). Directly interpretable Z-contrast imaging makes STEM imaging with a high-angle detector an appealing technique in contrast to conventional high-resolution electron microscopy, in which phase-contrast effects mean that atomic resolution images must be compared to simulations to aid interpretation.
In STEM, bright-field detectors are located in the path of the transmitted electron beam. Axial bright-field detectors are located in the centre of the cone of illumination of the transmitted beam, and are often used to provide complementary images to those obtained by ADF imaging. Annular bright-field detectors, located within the cone of illumination of the transmitted beam, have been used to obtain atomic resolution images in which the atomic columns of light elements such as oxygen are visible.
Differential phase contrast (DPC) is an imaging mode which relies on the beam being deflected by electromagnetic fields. In the classical case, the fast electrons in the electron beam is deflected by the Lorentz force, as shown schematically for a magnetic field in the figure to the left. The fast electron with charge −1 e passing through an electric field E and a magnetic field B experiences a force F:
F
=
−
e
E
−
e
v
×
B
{\displaystyle \mathbf {F} =-e\mathbf {E} -e\mathbf {v} \times \mathbf {B} }
For a magnetic field, this can be expressed as the amount of beam deflection experienced by the electron, βL:
β
L
=
−
e
λ
h
∫
B
×
d
l
{\displaystyle \beta _{L}=-{\frac {e\lambda }{h}}\int \mathbf {B} \times d\mathbf {l} }
where
λ
{\displaystyle \lambda }
is the wavelength of the electron,
h
{\displaystyle h}
the Planck constant and
∫
B
×
d
l
{\displaystyle \textstyle \int \mathbf {B} \times d\mathbf {l} }
is integrated magnetic induction along the trajectory of the electron. This last term reduces to
B
S
t
{\displaystyle B_{S}t}
when the electron beam is perpendicular to a sample of thickness
t
{\displaystyle t}
with constant in-plane magnetic induction of magnitude
B
S
{\displaystyle B_{S}}
. The beam deflection can then be imaged on a segmented or pixelated detector. This can be used to image magnetic and electric fields in materials. While the beam deflection mechanism through the Lorentz force is the most intuitive way of understanding DPC, a quantum mechanical approach is necessary to understand the phase-shift generated by the electromagnetic fields through the Aharonov–Bohm effect.
As the electron beam passes through the sample, some electrons in the beam lose energy via inelastic scattering interactions with electrons in the sample. In electron energy loss spectroscopy (EELS), the energy lost by the electrons in the beam is measured using an electron spectrometer, allowing features such as plasmons, and elemental ionization edges to be identified. Energy resolution in EELS is sufficient to allow the fine structure of ionization edges to be observed, which means that EELS can be used for chemical mapping, as well as elemental mapping. In STEM, EELS can be used to spectroscopically map a sample at atomic resolution. Recently developed monochromators can achieve an energy resolution of ~10 meV in EELS, allowing vibrational spectra to be acquired in STEM.
Convergent-beam electron diffraction (CBED) is a STEM technique that provides information about crystal structure at a specific point in a sample. In CBED, the width of the area a diffraction pattern is acquired from is equal to the size of the probe used, which can be smaller than 1 Å in an aberration-corrected STEM (see above). CBED differs from conventional electron diffraction in that CBED patterns consist of diffraction disks, rather than spots. The width of CBED disks is determined by the convergence angle of the electron beam. Other features, such as Kikuchi lines are often visible in CBED patterns. CBED can be used to determine the point and space groups of a specimen.
Electron microscopy has accelerated research in materials science by quantifying properties and features from nanometer-resolution imaging with STEM, which is crucial in observing and confirming factors, such as thin film deposition, crystal growth, surface structure formation, and dislocation movement. Until recently, most papers have inferred the properties and behaviors of material systems based on these images without being able to establish rigorous rules for what exactly is observed. The techniques that have emerged as a result of interest in quantitative scanning transmission electron microscopy (QSTEM) closes this gap by allowing researchers to identify and quantify structural features that are only visible using high-resolution imaging in a STEM. Widely available image processing techniques are applied to high-angle annular dark field (HAADF) images of atomic columns to precisely locate their positions and the material's lattice constant(s). This ideology has been successfully used to quantify structural properties, such as strain and bond angle, at interfaces and defect complexes. QSTEM allows researchers to now compare the experimental data to theoretical simulations both qualitatively and quantitatively. Recent studies published have shown that QSTEM can measure structural properties, such as interatomic distances, lattice distortions from point defects, and locations of defects within an atomic column, with high accuracy. QSTEM can also be applied to selected area diffraction patterns and convergent beam diffraction patterns to quantify the degree and types of symmetry present in a specimen. Since any materials research requires structure-property relationship studies, this technique is applicable to countless fields. A notable study is the mapping of atomic column intensities and interatomic bond angles in a mott-insulator system. This was the first study to show that the transition from the insulating to conducting state was due to a slight global decrease in distortion, which was concluded by mapping the interatomic bond angles as a function of the dopant concentration. This effect is not visible by the human eye in a standard atomic-scale image enabled by HAADF imaging, thus this important finding was only made possible due to the application of QSTEM.
QSTEM analysis can be achieved using commonplace software and programming languages, such as MatLab or Python, with the help of toolboxes and plug-ins that serve to expedite the process. This is analysis that can be performed virtually anywhere. Consequently, the largest roadblock is acquiring a high-resolution, aberration-corrected scanning transmission electron microscope that can provide the images necessary to provide accurate quantification of structural properties at the atomic level. Most university research groups, for example, require permission to use such high-end electron microscopes at national lab facilities, which requires excessive time commitment. Universal challenges mainly involve becoming accustomed to the programming language desired and writing software that can tackle the very specific problems for a given material system. For example, one can imagine how a different analysis technique, and thus a separate image processing algorithm, is necessary for studying ideal cubic versus complex monoclinic structures.
Specialized sample holders or modifications to the microscope can allow a number of additional techniques to be performed in STEM. Some examples are described below.
STEM tomography allows the complete three-dimensional internal and external structure of a specimen to be reconstructed from a tilt-series of 2D projection images of the specimen acquired at incremental tilts. High angle ADF STEM is a particularly useful imaging mode for electron tomography because the intensity of high angle ADF-STEM images varies only with the projected mass-thickness of the sample, and the atomic number of atoms in the sample. This yields highly interpretable three dimensional reconstructions.
In order to study the reactions of particles in gaseous environments, a STEM may be modified with a differentially pumped sample chamber to allow gas flow around the sample, whilst a specialized holder is used to control the reaction temperature. Alternatively a holder mounted with an enclosed gas flow cell may be used.
Nanoparticles and biological cells have been studied in liquid environments using liquid-phase electron microscopy in STEM, accomplished by mounting a microfluidic enclosure in the specimen holder.
Muller, D.A.; Grazul, J. (2001). "Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy". Journal of Electron Microscopy. 50 (3): 219–226. doi:10.1093/jmicro/50.3.219. PMID 11469410. https://doi.org/10.1093%2Fjmicro%2F50.3.219
von Ardenne, M (1938). "Das Elektronen-Rastermikroskop. Theoretische Grundlagen". Z. Phys. 109 (9–10): 553–572. Bibcode:1938ZPhy..109..553V. doi:10.1007/BF01341584. S2CID 117900835. /wiki/Bibcode_(identifier)
von Ardenne, M (1938). "Das Elektronen-Rastermikroskop. Praktische Ausführung". Z. Tech. Phys. 19: 407–416.
D. McMullan, SEM 1928 – 1965 http://www-g.eng.cam.ac.uk/125/achievements/mcmullan/mcm.htm
Crewe, Albert V; Isaacson, M.; Johnson, D. (1969). "A Simple Scanning Electron Microscope". Rev. Sci. Instrum. (Submitted manuscript). 40 (2): 241–246. Bibcode:1969RScI...40..241C. doi:10.1063/1.1683910. https://digital.library.unt.edu/ark:/67531/metadc1061663/
Crewe, Albert V; Wall, J.; Langmore, J. (1970). "Visibility of a single atom". Science. 168 (3937): 1338–1340. Bibcode:1970Sci...168.1338C. doi:10.1126/science.168.3937.1338. PMID 17731040. S2CID 31952480. /wiki/Bibcode_(identifier)
Shin, D.H.; Kirkland, E.J.; Silcox, J. (1989). "Annular dark field electron microscope images with better than 2 Å resolution at 100 kV". Appl. Phys. Lett. 55 (23): 2456. Bibcode:1989ApPhL..55.2456S. CiteSeerX 10.1.1.466.7672. doi:10.1063/1.102297. /wiki/Bibcode_(identifier)
Batson, P.E.; Domenincucci, A.G.; Lemoine, E. (1997). "Atomic resolution electronic structure in device development". Microsc. Microanal. 3 (S2): 645. Bibcode:1997MiMic...3S.645B. doi:10.1017/S1431927600026064. S2CID 250948492. /wiki/Bibcode_(identifier)
Dellby, N.; Krivanek, O. L.; Nellist, P. D.; Batson, P. E.; Lupini, A. R. (2001). "Progress in aberration-corrected scanning transmission electron microscopy". Microscopy. 50 (3): 177–185. doi:10.1093/jmicro/50.3.177. PMID 11469406. /wiki/Ondrej_Krivanek
Kisielowski, C.; Freitag, B.; Bischoff, M.; Van Lin, H.; Lazar, S.; Knippels, G.; Tiemeijer, P.; Van Der Stam, M.; von Harrach, S.; Stekelenburg, M.; Haider, M.; Uhlemann, S.; Müller, H.; Hartel, P.; Kabius, B.; Miller, D.; Petrov, I.; Olson, E.A.; Donchev, T.; Kenik, E.A.; Lupini, A.R.; Bentley, J.; Pennycook, S.J.; Anderson, I.M.; Minor, A.M.; Schmid, A.K.; Duden, T.; Radmilovic, V.; Ramasse, Q.M.; et al. (2008). "Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit". Microscopy and Microanalysis. 14 (5): 469–477. Bibcode:2008MiMic..14..469K. doi:10.1017/S1431927608080902. PMID 18793491. S2CID 12689183. /wiki/Bibcode_(identifier)
Pennycook, S.J.; Jesson, D.E. (1991). "High-resolution Z-contrast imaging of crystals". Ultramicroscopy (Submitted manuscript). 37 (1–4): 14–38. doi:10.1016/0304-3991(91)90004-P. https://zenodo.org/record/1258469
Xu, Peirong; Kirkland, Earl J.; Silcox, John; Keyse, Robert (1990). "High-resolution imaging of silicon (111) using a 100 keV STEM". Ultramicroscopy. 32 (2): 93–102. doi:10.1016/0304-3991(90)90027-J. https://doi.org/10.1016%2F0304-3991%2890%2990027-J
Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. (2010). "Dynamics of annular bright field imaging in scanning transmission electron microscopy". Ultramicroscopy. 32 (7): 903–923. doi:10.1016/j.ultramic.2010.04.004. PMID 20434265. /wiki/Doi_(identifier)
Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen (June 2016). "Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast". Ultramicroscopy. 165: 42–50. doi:10.1016/j.ultramic.2016.03.006. PMID 27085170. https://doi.org/10.1016%2Fj.ultramic.2016.03.006
Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen (June 2016). "Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast". Ultramicroscopy. 165: 42–50. doi:10.1016/j.ultramic.2016.03.006. PMID 27085170. https://doi.org/10.1016%2Fj.ultramic.2016.03.006
Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen (June 2016). "Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast". Ultramicroscopy. 165: 42–50. doi:10.1016/j.ultramic.2016.03.006. PMID 27085170. https://doi.org/10.1016%2Fj.ultramic.2016.03.006
McVitie, S.; Hughes, S.; Fallon, K.; McFadzean, S.; McGrouther, D.; Krajnak, M.; Legrand, W.; Maccariello, D.; Collin, S.; Garcia, K.; Reyren, N.; Cros, V.; Fert, A.; Zeissler, K.; Marrows, C. H. (9 April 2018). "A transmission electron microscope study of Néel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction". Scientific Reports. 8 (1): 5703. arXiv:1711.05552. Bibcode:2018NatSR...8.5703M. doi:10.1038/s41598-018-23799-0. PMC 5890272. PMID 29632330. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890272
Haas, Benedikt; Rouvière, Jean-Luc; Boureau, Victor; Berthier, Remy; Cooper, David (March 2019). "Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy". Ultramicroscopy. 198: 58–72. doi:10.1016/j.ultramic.2018.12.003. PMID 30660032. S2CID 58636157. https://doi.org/10.1016%2Fj.ultramic.2018.12.003
Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen (June 2016). "Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast". Ultramicroscopy. 165: 42–50. doi:10.1016/j.ultramic.2016.03.006. PMID 27085170. https://doi.org/10.1016%2Fj.ultramic.2016.03.006
Chapman, J N (14 April 1984). "The investigation of magnetic domain structures in thin foils by electron microscopy". Journal of Physics D: Applied Physics. 17 (4): 623–647. doi:10.1088/0022-3727/17/4/003. S2CID 250805904. /wiki/Doi_(identifier)
McVitie, S.; McGrouther, D.; McFadzean, S.; MacLaren, D.A.; O’Shea, K.J.; Benitez, M.J. (May 2015). "Aberration corrected Lorentz scanning transmission electron microscopy" (PDF). Ultramicroscopy. 152: 57–62. doi:10.1016/j.ultramic.2015.01.003. PMID 25677688. http://eprints.gla.ac.uk/102200/2/102200.pdf
Tate, Mark W.; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X.; Hovden, Robert; Chang, Celesta S.; Deb, Pratiti; Turgut, Emrah; Heron, John T.; Schlom, Darrell G.; Ralph, Daniel C.; Fuchs, Gregory D.; Shanks, Katherine S.; Philipp, Hugh T.; Muller, David A.; Gruner, Sol M. (2016). "High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy". Microscopy and Microanalysis. 22 (1): 237–249. arXiv:1511.03539. Bibcode:2016MiMic..22..237T. doi:10.1017/S1431927615015664. PMID 26750260. S2CID 5984477. /wiki/ArXiv_(identifier)
Ophus, Colin (June 2019). "Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond". Microscopy and Microanalysis. 25 (3): 563–582. Bibcode:2019MiMic..25..563O. doi:10.1017/S1431927619000497. ISSN 1431-9276. PMID 31084643. https://doi.org/10.1017%2FS1431927619000497
"4D STEM with a direct electron detector". Wiley Analytical Science. Retrieved 2020-02-11. https://analyticalscience.wiley.com/do/10.1002/was.00010003
Ciston, Jim; Ophus, Colin; Ercius, Peter; Yang, Hao; Dos Reis, Roberto; Nelson, Christopher T.; Hsu, Shang-Lin; Gammer, Christoph; Özdöl, Burak V.; Deng, Yu; Minor, Andrew (2016). "Multimodal Acquisition of Properties and Structure with Transmission Electron Reciprocal-space (MAPSTER) Microscopy". Microscopy and Microanalysis. 22(S3) (S3): 1412–1413. Bibcode:2016MiMic..22S1412C. doi:10.1017/S143192761600790X. https://doi.org/10.1017%2FS143192761600790X
Egerton, R.F., ed. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer. ISBN 978-1-4419-9582-7. 978-1-4419-9582-7
Mundy, Julia A.; Hikita, Yasuyuki; Hidaka, Takeaki; Yajima, Takeaki; Higuchi, Takuya; Hwang, Harold Y.; Muller, David A.; Kourkoutis, Lena F. (2014). "Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal–insulator transition". Nature Communications. 5: 3464. Bibcode:2014NatCo...5.3464M. doi:10.1038/ncomms4464. PMID 24632721. https://doi.org/10.1038%2Fncomms4464
Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R. W.; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E.; Lagos, Maureen J.; Egerton, Ray F.; Crozier, Peter A. (2016). "Vibrational spectroscopy in the electron microscope". Nature. 514 (7521): 209–212. Bibcode:2014Natur.514..209K. doi:10.1038/nature13870. PMID 25297434. S2CID 4467249. /wiki/Ondrej_Krivanek
Friel, J.J.; Lyman, C.E. (2006). "Tutorial Review: X-ray Mapping in Electron-Beam Instruments". Microscopy and Microanalysis. 12 (1): 2–25. Bibcode:2006MiMic..12....2F. CiteSeerX 10.1.1.548.9845. doi:10.1017/S1431927606060211. PMID 17481338. S2CID 135786852. /wiki/Bibcode_(identifier)
Zaluzec, Nestor J. (2009). "Innovative Instrumentation for Analysis of Nanoparticles: The π Steradian Detector". Microsc. Today. 17 (4): 56–59. doi:10.1017/S1551929509000224. S2CID 137645643. https://doi.org/10.1017%2FS1551929509000224
Chen, Z.; Weyland, M.; Sang, X.; Xu, W.; Dycus, J.H.; Lebeau, J.M.; d'Alfonso, A.J.; Allen, L.J.; Findlay, S.D. (2016). "Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy". Ultramicroscopy. 168 (4): 7–16. doi:10.1016/j.ultramic.2016.05.008. PMID 27258645. https://doi.org/10.1016%2Fj.ultramic.2016.05.008
Reimer, L.; Kohl, R., eds. (2008). Transmission Electron Microscopy Physics of Image Formation. Springer. ISBN 978-0-387-40093-8. 978-0-387-40093-8
Kim, Honggyu; Marshall, Patrick B.; Ahadi, Kaveh; Mates, Thomas E.; Mikheev, Evgeny; Stemmer, Susanne (2017). "Response of the Lattice across the Filling-Controlled Mott Metal-Insulator Transition of a Rare Earth Titanate". Physical Review Letters. 119 (18): 186803. arXiv:1710.01425. Bibcode:2017PhRvL.119r6803K. doi:10.1103/PhysRevLett.119.186803. PMID 29219551. S2CID 206301792. /wiki/ArXiv_(identifier)
Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert (2016). "Nanomaterial datasets to advance tomography in scanning transmission electron microscopy". Scientific Data. 3 (160041): 160041. arXiv:1606.02938. Bibcode:2016NatSD...360041L. doi:10.1038/sdata.2016.41. PMC 4896123. PMID 27272459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896123
Midgley, P. A.; Weyland, M. (2003). "3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography". Ultramicroscopy. 96 (3–4): 413–431. doi:10.1016/S0304-3991(03)00105-0. PMID 12871805. /wiki/Paul_Midgley
Wolf, Sharon Grayer; Houben, Lothar; Elbaum, Michael (2014). "Cryo-scanning transmission electron tomography of vitrified cells". Nature Methods. 11 (4): 423–428. doi:10.1038/nmeth.2842. PMID 24531421. S2CID 5336785. /wiki/Doi_(identifier)
Zachman, Michael J.; Asenath-Smith, Emily; Estroff, Lara A.; Kourkoutis, Lena F. (2016). "Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out". Microscopy and Microanalysis. 22 (6): 1338–1349. Bibcode:2016MiMic..22.1338Z. doi:10.1017/S1431927616011892. PMID 27869059. S2CID 25314940. https://doi.org/10.1017%2FS1431927616011892
Levin, Barnaby D.A.; Zachman, Michael J.; Werner, Jörg G.; Sahore, Ritu; Nguyen, Kayla X.; Han, Yimo; Xie, Baoquan; Ma, Lin; Archer, Lynden A.; Giannelis, Emmanuel P.; Wiesner, Ulrich; Kourkoutis, Lena F.; Muller, David A. (2017). "Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts". Microscopy and Microanalysis. 23 (1): 155–162. Bibcode:2017MiMic..23..155L. doi:10.1017/S1431927617000058. PMID 28228169. S2CID 6801783. https://zenodo.org/record/889883
Boyes, Edward D.; Ward, Michael R.; Lari, Leonardo; Gai, Pratibha L. (2013). "ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies". Annalen der Physik. 525 (6): 423–429. Bibcode:2013AnP...525..423B. doi:10.1002/andp.201300068. S2CID 119973907. /wiki/Bibcode_(identifier)
Li, Y.; Zakharov, D.; Zhao, S.; Tappero, R.; Jung, U.; Elsen, A.; Baumann, Ph.; Nuzzo, R.G.; Stach, E.A.; Frenkel, A.I. (2015). "Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes". Nature Communications. 6: 7583. Bibcode:2015NatCo...6.7583L. doi:10.1038/ncomms8583. PMC 4491830. PMID 26119246. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491830
de Jonge, N.; Ross, F.M. (2011). "Electron microscopy of specimens in liquid". Nature Nanotechnology. 6 (8): 695–704. Bibcode:2003NatMa...2..532W. doi:10.1038/nmat944. PMID 12872162. S2CID 21379512. https://www.researchgate.net/publication/51735636
de Jonge, N.; Peckys, D.B.; Kremers, G.J.; Piston, D.W. (2009). "Electron microscopy of whole cells in liquid with nanometer resolution". Proceedings of the National Academy of Sciences of the USA. 106 (7): 2159–2164. Bibcode:2009PNAS..106.2159J. doi:10.1073/pnas.0809567106. PMC 2650183. PMID 19164524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650183
Ievlev, Anton V.; Jesse, Stephen; Cochell, Thomas J.; Unocic, Raymond R.; Protopopescu, Vladimir A.; Kalinin, Sergei V. (2015). "Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy". ACS Nano. 9 (12): 11784–11791. doi:10.1021/acsnano.5b03720. PMID 26509714. /wiki/Doi_(identifier)
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen (2016). "Direct-write liquid phase transformations with a scanning transmission electron microscope". Nanoscale. 8 (34): 15581–15588. doi:10.1039/C6NR04994J. OSTI 1333640. PMID 27510435. /wiki/Doi_(identifier)
Nebesářová, Jana; Vancová, Marie (2007). "How to Observe Small Biological Objects in Low-Voltage Electron Microscope". Microscopy and Microanalysis. 13 (S03): 248–249. Bibcode:2007MiMic..13S.248N. doi:10.1017/S143192760708124X. S2CID 138891812. https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/div-classtitlehow-to-observe-small-biological-objects-in-low-voltage-electron-microscopediv/9A089B9CA06B9F5D18A2CD12EA4B2A24
Drummy, Lawrence, F.; Yang, Junyan; Martin, David C. (2004). "Low-voltage electron microscopy of polymer and organic molecular thin films". Ultramicroscopy. 99 (4): 247–256. doi:10.1016/j.ultramic.2004.01.011. PMID 15149719.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Doi_(identifier)