There is a parametrized algorithm that finds an optimal solution for the MSCP in bounded treewidth graphs. So both the Spanning Caterpillar Problem and the MSCP have linear time algorithms if a graph is an outerplanar, a series-parallel, or a Halin graph.
Harary, Frank; Schwenk, Allen J. (1973), "The number of caterpillars" (PDF), Discrete Mathematics, 6 (4): 359–365, doi:10.1016/0012-365x(73)90067-8, hdl:2027.42/33977. /wiki/Frank_Harary
El-Basil, Sherif (1987), "Applications of caterpillar trees in chemistry and physics", Journal of Mathematical Chemistry, 1 (2): 153–174, doi:10.1007/BF01205666, S2CID 121322252. /wiki/Doi_(identifier)
Harary, Frank; Schwenk, Allen J. (1973), "The number of caterpillars" (PDF), Discrete Mathematics, 6 (4): 359–365, doi:10.1016/0012-365x(73)90067-8, hdl:2027.42/33977. /wiki/Frank_Harary
El-Basil, Sherif (1987), "Applications of caterpillar trees in chemistry and physics", Journal of Mathematical Chemistry, 1 (2): 153–174, doi:10.1007/BF01205666, S2CID 121322252. /wiki/Doi_(identifier)
Harary, Frank; Schwenk, Allen J. (1971), "Trees with Hamiltonian square", Mathematika, 18: 138–140, doi:10.1112/S0025579300008494, hdl:2027.42/153141. /wiki/Frank_Harary
Harary, Frank; Schwenk, Allen J. (1971), "Trees with Hamiltonian square", Mathematika, 18: 138–140, doi:10.1112/S0025579300008494, hdl:2027.42/153141. /wiki/Frank_Harary
Harary, Frank; Schwenk, Allen J. (1971), "Trees with Hamiltonian square", Mathematika, 18: 138–140, doi:10.1112/S0025579300008494, hdl:2027.42/153141. /wiki/Frank_Harary
Harary, Frank; Schwenk, Allen J. (1972), "A new crossing number for bipartite graphs", Utilitas Math., 1: 203–209. /wiki/Frank_Harary
Harary, Frank; Schwenk, Allen J. (1971), "Trees with Hamiltonian square", Mathematika, 18: 138–140, doi:10.1112/S0025579300008494, hdl:2027.42/153141. /wiki/Frank_Harary
Raychaudhuri, Arundhati (1995), "The total interval number of a tree and the Hamiltonian completion number of its line graph", Information Processing Letters, 56 (6): 299–306, doi:10.1016/0020-0190(95)00163-8. /wiki/Information_Processing_Letters
Proskurowski, Andrzej; Telle, Jan Arne (1999), "Classes of graphs with restricted interval models" (PDF), Discrete Mathematics and Theoretical Computer Science, 3: 167–176. http://www.emis.de/journals/DMTCS/volumes/abstracts/pdfpapers/dm030404.pdf
Eckhoff, Jürgen (1993), "Extremal interval graphs", Journal of Graph Theory, 17 (1): 117–127, doi:10.1002/jgt.3190170112. /wiki/Journal_of_Graph_Theory
E. Guseinov, Patterns of adjacency matrices and yet another proof that caterpillars are graceful [1] https://elmarguseinov.medium.com/patterns-of-adjacency-matrices-and-yet-another-proof-that-caterpillars-are-graceful-9511ef7472d4
Proskurowski, Andrzej; Telle, Jan Arne (1999), "Classes of graphs with restricted interval models" (PDF), Discrete Mathematics and Theoretical Computer Science, 3: 167–176. http://www.emis.de/journals/DMTCS/volumes/abstracts/pdfpapers/dm030404.pdf
Weisstein, Eric W. "Lobster graph". MathWorld. /wiki/Eric_W._Weisstein
Harary, Frank; Schwenk, Allen J. (1973), "The number of caterpillars" (PDF), Discrete Mathematics, 6 (4): 359–365, doi:10.1016/0012-365x(73)90067-8, hdl:2027.42/33977. /wiki/Frank_Harary
Khosravani, Masoud (2011). Searching for optimal caterpillars in general and bounded treewidth graphs (Ph.D.). University of Auckland. https://researchspace.auckland.ac.nz/handle/2292/8360?show=full
Khosravani, Masoud (2011). Searching for optimal caterpillars in general and bounded treewidth graphs (Ph.D.). University of Auckland. https://researchspace.auckland.ac.nz/handle/2292/8360?show=full
El-Basil, Sherif (1987), "Applications of caterpillar trees in chemistry and physics", Journal of Mathematical Chemistry, 1 (2): 153–174, doi:10.1007/BF01205666, S2CID 121322252. /wiki/Doi_(identifier)
Gutman, Ivan (1977), "Topological properties of benzenoid systems", Theoretica Chimica Acta, 45 (4): 309–315, doi:10.1007/BF00554539. /wiki/Doi_(identifier)
El-Basil, Sherif (1990), "Caterpillar (Gutman) trees in chemical graph theory", in Gutman, I.; Cyvin, S. J. (eds.), Advances in the Theory of Benzenoid Hydrocarbons, Topics in Current Chemistry, vol. 153, pp. 273–289, doi:10.1007/3-540-51505-4_28, ISBN 978-3-540-51505-0, S2CID 91687862. 978-3-540-51505-0