The most simple example of front solution connecting a homogeneous stable state with a homogeneous unstable state can be shown in the one-dimensional Fisher–Kolmogorov equation:
that describes a simple model for the density N ( x , t ) {\displaystyle N(x,t)} of population. This equation has two steady states, N = 0 {\displaystyle N=0} , and N = N 0 {\displaystyle N=N_{0}} . This solution corresponds to extinction and saturation of population. Observe that this model is spatially-extended, because it includes a diffusion term given by the second derivative. The state N ≡ N 0 {\displaystyle N\equiv N_{0}} is stable as a simple linear analysis can show and the state N = 0 {\displaystyle N=0} is unstable. There exist a family of front solutions connecting N = N 0 {\displaystyle N=N_{0}} with N = 0 {\displaystyle N=0} , and such solution are propagative. Particularly, there exist one solution of the form N ( t , x ) = N ( x − v t ) {\displaystyle N(t,x)=N(x-vt)} , with v {\displaystyle v} is a velocity that only depends on D {\displaystyle D} and r {\displaystyle r} 5
Pismen, L. M. (2006). Patterns and interfaces in dissipative dynamics. Berlin: Springer. ISBN 978-3-540-30430-2. 978-3-540-30430-2 ↩
Horsthemke, Vicenç Mendéz, Sergei Fedotov, Werner (2010). Reaction-transport systems : mesoscopic foundations, fronts, and spatial instabilities. Heidelberg: Springer. ISBN 978-3642114427.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-3642114427 ↩
Pomeau, Y. (1986). "Front motion, metastability and subcritical bifurcations in hydrodynamics". Physica D: Nonlinear Phenomena. 23 (1–3): 3–11. Bibcode:1986PhyD...23....3P. doi:10.1016/0167-2789(86)90104-1. /wiki/Bibcode_(identifier) ↩
Alvarez-Socorro, A. J.; Clerc, M.G.; González-Cortés, G; Wilson, M. (2017). "Nonvariational mechanism of front propagation: Theory and experiments". Physical Review E. 95 (1): 010202. Bibcode:2017PhRvE..95a0202A. doi:10.1103/PhysRevE.95.010202. hdl:10533/232239. PMID 28208393. /wiki/Bibcode_(identifier) ↩
Uchiyama, Kohei (1977). "The behavior of solutions of the equation of Kolmogorov–Petrovsky–Piskunov". Proceedings of the Japan Academy, Series A, Mathematical Sciences. 53 (7): 225–228. doi:10.3792/pjaa.53.225. https://www.researchgate.net/publication/38389672 ↩