The Berlekamp–Massey algorithm is an alternative to the Reed–Solomon Peterson decoder for solving the set of linear equations. It can be summarized as finding the coefficients Λj of a polynomial Λ(x) so that for all positions i in an input stream S:
In the code examples below, C(x) is a potential instance of Λ(x). The error locator polynomial C(x) for L errors is defined as:
or reversed:
The goal of the algorithm is to determine the minimal degree L and C(x) which results in all syndromes
being equal to 0:
Algorithm: C(x) is initialized to 1, L is the current number of assumed errors, and initialized to zero. N is the total number of syndromes. n is used as the main iterator and to index the syndromes from 0 to N−1. B(x) is a copy of the last C(x) since L was updated and initialized to 1. b is a copy of the last discrepancy d (explained below) since L was updated and initialized to 1. m is the number of iterations since L, B(x), and b were updated and initialized to 1.
Each iteration of the algorithm calculates a discrepancy d. At iteration k this would be:
If d is zero, the algorithm assumes that C(x) and L are correct for the moment, increments m, and continues.
If d is not zero, the algorithm adjusts C(x) so that a recalculation of d would be zero:
The xm term shifts B(x) so it follows the syndromes corresponding to b. If the previous update of L occurred on iteration j, then m = k − j, and a recalculated discrepancy would be:
This would change a recalculated discrepancy to:
The algorithm also needs to increase L (number of errors) as needed. If L equals the actual number of errors, then during the iteration process, the discrepancies will become zero before n becomes greater than or equal to 2L. Otherwise L is updated and the algorithm will update B(x), b, increase L, and reset m = 1. The formula L = (n + 1 − L) limits L to the number of available syndromes used to calculate discrepancies, and also handles the case where L increases by more than 1.
The algorithm from Massey (1969, p. 124) for an arbitrary field:
In the case of binary GF(2) BCH code, the discrepancy d will be zero on all odd steps, so a check can be added to avoid calculating it.
Reeds & Sloane 1985, p. 2 - Reeds, J. A.; Sloane, N. J. A. (1985), "Shift-Register Synthesis (Modulo n)" (PDF), SIAM Journal on Computing, 14 (3): 505–513, CiteSeerX 10.1.1.48.4652, doi:10.1137/0214038 http://neilsloane.com/doc/Me111.pdf ↩
Reeds, J. A.; Sloane, N. J. A. (1985), "Shift-Register Synthesis (Modulo n)" (PDF), SIAM Journal on Computing, 14 (3): 505–513, CiteSeerX 10.1.1.48.4652, doi:10.1137/0214038 /wiki/N._J._A._Sloane ↩
Berlekamp, Elwyn R. (1967), Nonbinary BCH decoding, International Symposium on Information Theory, San Remo, Italy{{citation}}: CS1 maint: location missing publisher (link) /wiki/Elwyn_Berlekamp ↩
Berlekamp, Elwyn R. (1984) [1968], Algebraic Coding Theory (Revised ed.), Laguna Hills, CA: Aegean Park Press, ISBN 978-0-89412-063-3. Previous publisher McGraw-Hill, New York, NY. 978-0-89412-063-3 ↩
Massey, J. L. (January 1969), "Shift-register synthesis and BCH decoding" (PDF), IEEE Transactions on Information Theory, IT-15 (1): 122–127, doi:10.1109/TIT.1969.1054260, S2CID 9003708 /wiki/James_Massey ↩
Ben Atti, Nadia; Diaz-Toca, Gema M.; Lombardi, Henri (April 2006), "The Berlekamp–Massey Algorithm revisited", Applicable Algebra in Engineering, Communication and Computing, 17 (1): 75–82, arXiv:2211.11721, CiteSeerX 10.1.1.96.2743, doi:10.1007/s00200-005-0190-z, S2CID 14944277 http://hlombardi.free.fr/publis/ABMAvar.html ↩
Massey 1969, p. 124 - Massey, J. L. (January 1969), "Shift-register synthesis and BCH decoding" (PDF), IEEE Transactions on Information Theory, IT-15 (1): 122–127, doi:10.1109/TIT.1969.1054260, S2CID 9003708 http://crypto.stanford.edu/~mironov/cs359/massey.pdf ↩