Define μ {\displaystyle \mu } the order, and the ν {\displaystyle \nu } degree are real, and assume x ∈ ( − 1 , + 1 ) {\displaystyle x\in (-1,+1)} .
Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Ferrers Function", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5 ↩
"DLMF: §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions". dlmf.nist.gov. Retrieved 2025-03-17. https://dlmf.nist.gov/14.3 ↩
Ferrers, Norman Macleod. An elementary treatise on spherical harmonics and subjects connected with them. Macmillan and Company, 1877. ↩