For any real number x and any positive rational number T, 1 Q ( x + T ) = 1 Q ( x ) {\displaystyle \mathbf {1} _{\mathbb {Q} }(x+T)=\mathbf {1} _{\mathbb {Q} }(x)} . The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of R {\displaystyle \mathbb {R} } .
Using an enumeration of the rational numbers between 0 and 1, we define the function fn (for all nonnegative integer n) as the indicator function of the set of the first n terms of this sequence of rational numbers. The increasing sequence of functions fn (which are nonnegative, Riemann-integrable with a vanishing integral) pointwise converges to the Dirichlet function which is not Riemann-integrable.
"Dirichlet-function", Encyclopedia of Mathematics, EMS Press, 2001 [1994] https://www.encyclopediaofmath.org/index.php?title=Dirichlet-function ↩
Dirichlet Function — from MathWorld http://mathworld.wolfram.com/DirichletFunction.html ↩
Lejeune Dirichlet, Peter Gustav (1829). "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données". Journal für die reine und angewandte Mathematik. 4: 157–169. https://eudml.org/doc/183134 ↩
Dunham, William (2005). The Calculus Gallery. Princeton University Press. p. 197. ISBN 0-691-09565-5. 0-691-09565-5 ↩