Consider a vector linear program
for P ∈ R q × n {\displaystyle P\in \mathbb {R} ^{q\times n}} , A ∈ R m × n {\displaystyle A\in \mathbb {R} ^{m\times n}} , b ∈ R m {\displaystyle b\in \mathbb {R} ^{m}} and a polyhedral convex ordering cone C {\displaystyle C} having nonempty interior and containing no lines. The feasible set is S = { x ∈ R n : A x ≥ b } {\displaystyle S=\{x\in \mathbb {R} ^{n}:\;Ax\geq b\}} . In particular, Benson's algorithm finds the extreme points of the set P [ S ] + C {\displaystyle P[S]+C} , which is called upper image.3
In case of C = R + q := { y ∈ R q : y 1 ≥ 0 , … , y q ≥ 0 } {\displaystyle C=\mathbb {R} _{+}^{q}:=\{y\in \mathbb {R} ^{q}:y_{1}\geq 0,\dots ,y_{q}\geq 0\}} , one obtains the special case of a multi-objective linear program (multiobjective optimization).
There is a dual variant of Benson's algorithm,4 which is based on geometric duality5 for multi-objective linear programs.
Bensolve - a free VLP solver
Inner
Harold P. Benson (1998). "An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem". Journal of Global Optimization. 13 (1): 1–24. doi:10.1023/A:1008215702611. /wiki/Doi_(identifier) ↩
Andreas Löhne (2011). Vector Optimization with Infimum and Supremum. Springer. pp. 162–169. ISBN 9783642183508. 9783642183508 ↩
Ehrgott, Matthias; Löhne, Andreas; Shao, Lizhen (2011). "A dual variant of Benson's "outer approximation algorithm" for multiple objective linear programming". Journal of Global Optimization. 52 (4): 757–778. doi:10.1007/s10898-011-9709-y. ISSN 0925-5001. /wiki/Doi_(identifier) ↩
Heyde, Frank; Löhne, Andreas (2008). "Geometric Duality in Multiple Objective Linear Programming" (PDF). SIAM Journal on Optimization. 19 (2): 836–845. doi:10.1137/060674831. ISSN 1052-6234. http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/06-15report.pdf ↩