BCD takes advantage of the fact that any one decimal numeral can be represented by a four-bit pattern. An obvious way of encoding digits is Natural BCD (NBCD), where each decimal digit is represented by its corresponding four-bit binary value, as shown in the following table. This is also called "8421" encoding.
As an example, encoding the decimal number 91 using unpacked BCD results in the following binary pattern of two bytes:
Decimal: 9 1
Binary : 0000 1001 0000 0001
Hence the numerical range for one unpacked BCD byte is zero through nine inclusive, whereas the range for one packed BCD byte is zero through ninety-nine inclusive.
To represent numbers larger than the range of a single byte any number of contiguous bytes may be used. For example, to represent the decimal number 12345 in packed BCD, using big-endian format, a program would encode as follows:
Decimal: 0 1 2 3 4 5
Binary : 0000 0001 0010 0011 0100 0101
Here, the most significant nibble of the most significant byte has been encoded as zero, so the number is stored as 012345 (but formatting routines might replace or remove leading zeros). Packed BCD is more efficient in storage usage than unpacked BCD; encoding the same number (with the leading zero) in unpacked format would consume twice the storage.
As an example, a 4-byte value consists of 8 nibbles, wherein the upper 7 nibbles store the digits of a 7-digit decimal value, and the lowest nibble indicates the sign of the decimal integer value. Standard sign values are 1100 (hex C) for positive (+) and 1101 (D) for negative (−). This convention comes from the zone field for EBCDIC characters and the signed overpunch representation.
Other allowed signs are 1010 (A) and 1110 (E) for positive and 1011 (B) for negative. IBM System/360 processors will use the 1010 (A) and 1011 (B) signs if the A bit is set in the PSW, for the ASCII-8 standard that never passed. Most implementations also provide unsigned BCD values with a sign nibble of 1111 (F). ILE RPG uses 1111 (F) for positive and 1101 (D) for negative. These match the EBCDIC zone for digits without a sign overpunch. In packed BCD, the number 127 is represented by 0001 0010 0111 1100 (127C) and −127 is represented by 0001 0010 0111 1101 (127D). Burroughs systems used 1101 (D) for negative, and any other value is considered a positive sign value (the processors will normalize a positive sign to 1100 (C)).
For example, a 4-byte (32-bit) word can hold seven decimal digits plus a sign and can represent values ranging from ±9,999,999. Thus the number −1,234,567 is 7 digits wide and is encoded as:
0001 0010 0011 0100 0101 0110 0111 1101
1 2 3 4 5 6 7 −
Like character strings, the first byte of the packed decimal – that with the most significant two digits – is usually stored in the lowest address in memory, independent of the endianness of the machine.
While packed BCD does not make optimal use of storage (using about 20% more memory than binary notation to store the same numbers), conversion to ASCII, EBCDIC, or the various encodings of Unicode is made trivial, as no arithmetic operations are required. The extra storage requirements are usually offset by the need for the accuracy and compatibility with calculator or hand calculation that fixed-point decimal arithmetic provides. Denser packings of BCD exist which avoid the storage penalty and also need no arithmetic operations for common conversions.
As a result, this system allows for 32-bit packed BCD numbers to range from −50,000,000 to +49,999,999, and −1 is represented as 99999999. (As with two's complement binary numbers, the range is not symmetric about zero.)
For example, a packed decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when the implied decimal point is located between the fourth and fifth digits:
12 34 56 7C
The decimal point is not actually stored in memory, as the packed BCD storage format does not provide for it. Its location is simply known to the compiler, and the generated code acts accordingly for the various arithmetic operations.
If a decimal digit requires four bits, then three decimal digits require 12 bits. However, since 210 (1,024) is greater than 103 (1,000), if three decimal digits are encoded together, only 10 bits are needed. Two such encodings are Chen–Ho encoding and densely packed decimal (DPD). The latter has the advantage that subsets of the encoding encode two digits in the optimal seven bits and one digit in four bits, as in regular BCD.
For signed zoned decimal values, the rightmost (least significant) zone nibble holds the sign digit, which is the same set of values that are used for signed packed decimal numbers (see above). Thus a zoned decimal value encoded as the hex bytes F1 F2 D3 represents the signed decimal value −123:
F1 F2 D3
1 2 −3
Some languages (such as COBOL and PL/I) directly support fixed-point zoned decimal values, assigning an implicit decimal point at some location between the decimal digits of a number.
For example, given a six-byte signed zoned decimal value with an implied decimal point to the right of the fourth digit, the hex bytes F1 F2 F7 F9 F5 C0 represent the value +1,279.50:
F1 F2 F7 F9 F5 C0
1 2 7 9. 5 +0
10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:
10001 + 0110 = 00010111 => 0001 0111
17 + 6 = 23 1 7
The two nibbles of the result, 0001 and 0111, correspond to the digits "1" and "7". This yields "17" in BCD, which is the correct result.
This technique can be extended to adding multiple digits by adding in groups from right to left, propagating the second digit as a carry, always comparing the 5-bit result of each digit-pair sum to 9. Some CPUs provide a half-carry flag to facilitate BCD arithmetic adjustments following binary addition and subtraction operations. The Intel 8080, the Zilog Z80 and the CPUs of the x86 family provide the opcode DAA (Decimal Adjust Accumulator).
In signed BCD, 357 is 0000 0011 0101 0111. The ten's complement of 432 can be obtained by taking the nine's complement of 432, and then adding one. So, 999 − 432 = 567, and 567 + 1 = 568. By preceding 568 in BCD by the negative sign code, the number −432 can be represented. So, −432 in signed BCD is 1001 0101 0110 1000.
Now that both numbers are represented in signed BCD, they can be added together:
0000 0011 0101 0111
0 3 5 7
+ 1001 0101 0110 1000
9 5 6 8
= 1001 1000 1011 1111
9 8 11 15
Since BCD is a form of decimal representation, several of the digit sums above are invalid. In the event that an invalid entry (any BCD digit greater than 1001) exists, 6 is added to generate a carry bit and cause the sum to become a valid entry. So, adding 6 to the invalid entries results in the following:
1001 1000 1011 1111
9 8 11 15
+ 0000 0000 0110 0110
0 0 6 6
= 1001 1001 0010 0101
9 9 2 5
Thus the result of the subtraction is 1001 1001 0010 0101 (−925). To confirm the result, note that the first digit is 9, which means negative. This seems to be correct since 357 − 432 should result in a negative number. The remaining nibbles are BCD, so 1001 0010 0101 is 925. The ten's complement of 925 is 1000 − 925 = 75, so the calculated answer is −75.
If there are a different number of nibbles being added together (such as 1053 − 2), the number with the fewer digits must first be prefixed with zeros before taking the ten's complement or subtracting. So, with 1053 − 2, 2 would have to first be represented as 0002 in BCD, and the ten's complement of 0002 would have to be calculated.
The IBM 1400 series are character-addressable machines, each location being six bits labeled B, A, 8, 4, 2 and 1, plus an odd parity check bit (C) and a word mark bit (M). For encoding digits 1 through 9, B and A are zero and the digit value represented by standard 4-bit BCD in bits 8 through 1. For most other characters bits B and A are derived simply from the "12", "11", and "0" "zone punches" in the punched card character code, and bits 8 through 1 from the 1 through 9 punches. A "12 zone" punch set both B and A, an "11 zone" set B, and a "0 zone" (a 0 punch combined with any others) set A. Thus the letter A, which is (12,1) in the punched card format, is encoded (B,A,1). The currency symbol $, (11,8,3) in the punched card, was encoded in memory as (B,8,2,1). This allows the circuitry to convert between the punched card format and the internal storage format to be very simple with only a few special cases. One important special case is digit 0, represented by a lone 0 punch in the card, and (8,2) in core memory.
The memory of the IBM 1620 is organized into 6-bit addressable digits, the usual 8, 4, 2, 1 plus F, used as a flag bit and C, an odd parity check bit. BCD alphamerics are encoded using digit pairs, with the "zone" in the even-addressed digit and the "digit" in the odd-addressed digit, the "zone" being related to the 12, 11, and 0 "zone punches" as in the 1400 series. Input/output translation hardware converted between the internal digit pairs and the external standard 6-bit BCD codes.
Many processors have hardware support for BCD-encoded integer arithmetic. For example, the 6502, the Motorola 68000 series, and the x86 series. The Intel x86 architecture supports a unique 18-digit (ten-byte) BCD format that can be loaded into and stored from the floating point registers, from where computations can be performed.
In more recent computers such capabilities are almost always implemented in software rather than the CPU's instruction set, but BCD numeric data are still extremely common in commercial and financial applications.
There are tricks for implementing packed BCD and zoned decimal add–or–subtract operations using short but difficult to understand sequences of word-parallel logic and binary arithmetic operations. For example, the following code (written in C) computes an unsigned 8-digit packed BCD addition using 32-bit binary operations:
uint32_t BCDadd(uint32_t a, uint32_t b)
{
uint32_t t1, t2; // unsigned 32-bit intermediate values
t1 = a + 0x06666666;
t2 = t1 ^ b; // sum without carry propagation
t1 = t1 + b; // provisional sum
t2 = t1 ^ t2; // all the binary carry bits
t2 = ~t2 & 0x11111110; // just the BCD carry bits
t2 = (t2 >> 2) | (t2 >> 3); // correction
return t1 - t2; // corrected BCD sum
}
BCD is common in electronic systems where a numeric value is to be displayed, especially in systems consisting solely of digital logic, and not containing a microprocessor. By employing BCD, the manipulation of numerical data for display can be greatly simplified by treating each digit as a separate single sub-circuit.
This matches much more closely the physical reality of display hardware—a designer might choose to use a series of separate identical seven-segment displays to build a metering circuit, for example. If the numeric quantity were stored and manipulated as pure binary, interfacing with such a display would require complex circuitry. Therefore, in cases where the calculations are relatively simple, working throughout with BCD can lead to an overall simpler system than converting to and from binary. Most pocket calculators do all their calculations in BCD.
The same argument applies when hardware of this type uses an embedded microcontroller or other small processor. Often, representing numbers internally in BCD format results in smaller code, since a conversion from or to binary representation can be expensive on such limited processors. For these applications, some small processors feature dedicated arithmetic modes, which assist when writing routines that manipulate BCD quantities.
Various BCD implementations exist that employ other representations for numbers. Programmable calculators manufactured by Texas Instruments, Hewlett-Packard, and others typically employ a floating-point BCD format, typically with two or three digits for the (decimal) exponent. The extra bits of the sign digit may be used to indicate special numeric values, such as infinity, underflow/overflow, and error (a blinking display).
The mentioned 3GPP document defines TBCD-STRING with swapped nibbles in each byte. Bits, octets and digits indexed from 1, bits from the right, digits and octets from the left.
Meaning number 1234, would become 21 43 in TBCD.
If errors in representation and computation are more important than the speed of conversion to and from display, a scaled binary representation may be used, which stores a decimal number as a binary-encoded integer and a binary-encoded signed decimal exponent. For example, 0.2 can be represented as 2×10−1.
This representation allows rapid multiplication and division, but may require shifting by a power of 10 during addition and subtraction to align the decimal points. It is appropriate for applications with a fixed number of decimal places that do not then require this adjustment—particularly financial applications where 2 or 4 digits after the decimal point are usually enough. Indeed, this is almost a form of fixed point arithmetic since the position of the radix point is implied.
The decision noted that a patent "would wholly pre-empt the mathematical formula and in practical effect would be a patent on the algorithm itself". This was a landmark judgement that determined the patentability of software and algorithms.
Intel. "ia32 architecture manual" (PDF). Intel. Archived (PDF) from the original on 2022-10-09. Retrieved 2015-07-01. http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developers-manual.pdf
Klar, Rainer (1970-02-01). "1.5.3 Konvertierung binär verschlüsselter Dezimalzahlen" [1.5.3 Conversion of binary coded decimal numbers]. Digitale Rechenautomaten – Eine Einführung [Digital Computers – An Introduction]. Sammlung Göschen (in German). Vol. 1241/1241a (1 ed.). Berlin, Germany: Walter de Gruyter & Co. / G. J. Göschen'sche Verlagsbuchhandlung [de]. pp. 17, 21. ISBN 3-11-083160-0. . Archiv-Nr. 7990709. Archived from the original on 2020-04-18. Retrieved 2020-04-13. (205 pages) (NB. A 2019 reprint of the first edition is available under ISBN 3-11002793-3, 978-3-11002793-8. A reworked and expanded 4th edition exists as well.) 3-11-083160-0
Klar, Rainer (1989) [1988-10-01]. "1.4 Codes: Binär verschlüsselte Dezimalzahlen" [1.4 Codes: Binary coded decimal numbers]. Digitale Rechenautomaten – Eine Einführung in die Struktur von Computerhardware [Digital Computers – An Introduction into the structure of computer hardware]. Sammlung Göschen (in German). Vol. 2050 (4th reworked ed.). Berlin, Germany: Walter de Gruyter & Co. pp. 25, 28, 38–39. ISBN 3-11011700-2. p. 25: […] Die nicht erlaubten 0/1-Muster nennt man auch Pseudodezimalen. […] (320 pages) 3-11011700-2
Schneider, Hans-Jochen (1986). Lexikon der Informatik und Datenverarbeitung (in German) (2 ed.). R. Oldenbourg Verlag München Wien. ISBN 3-486-22662-2. 3-486-22662-2
Tafel, Hans Jörg (1971). Einführung in die digitale Datenverarbeitung [Introduction to digital information processing] (in German). Munich: Carl Hanser Verlag. ISBN 3-446-10569-7. 3-446-10569-7
Steinbuch, Karl W.; Weber, Wolfgang; Heinemann, Traute, eds. (1974) [1967]. Taschenbuch der Informatik - Band II - Struktur und Programmierung von EDV-Systemen. Taschenbuch der Nachrichtenverarbeitung (in German). Vol. 2 (3 ed.). Berlin, Germany: Springer-Verlag. ISBN 3-540-06241-6. LCCN 73-80607. 3-540-06241-6
Tietze, Ulrich; Schenk, Christoph (2012-12-06). Advanced Electronic Circuits. Springer Science & Business Media. ISBN 978-3642812415. 9783642812415. Retrieved 2015-08-05. 978-3642812415
Kowalski, Emil (2013-03-08) [1970]. Nuclear Electronics. Springer-Verlag. doi:10.1007/978-3-642-87663-9. ISBN 978-3642876639. 9783642876639, 978-3-642-87664-6. Retrieved 2015-08-05. 978-3642876639
Klar, Rainer (1989) [1988-10-01]. "1.4 Codes: Binär verschlüsselte Dezimalzahlen" [1.4 Codes: Binary coded decimal numbers]. Digitale Rechenautomaten – Eine Einführung in die Struktur von Computerhardware [Digital Computers – An Introduction into the structure of computer hardware]. Sammlung Göschen (in German). Vol. 2050 (4th reworked ed.). Berlin, Germany: Walter de Gruyter & Co. pp. 25, 28, 38–39. ISBN 3-11011700-2. p. 25: […] Die nicht erlaubten 0/1-Muster nennt man auch Pseudodezimalen. […] (320 pages) 3-11011700-2
Ferretti, Vittorio (2013-03-13). Wörterbuch der Elektronik, Datentechnik und Telekommunikation / Dictionary of Electronics, Computing and Telecommunications: Teil 1: Deutsch-Englisch / Part 1: German-English. Vol. 1 (2 ed.). Springer-Verlag. ISBN 978-3642980886. 9783642980886. Retrieved 2015-08-05. 978-3642980886
Speiser, Ambrosius Paul (1965) [1961]. Digitale Rechenanlagen - Grundlagen / Schaltungstechnik / Arbeitsweise / Betriebssicherheit [Digital computers - Basics / Circuits / Operation / Reliability] (in German) (2 ed.). ETH Zürich, Zürich, Switzerland: Springer-Verlag / IBM. p. 209. LCCN 65-14624. 0978. /wiki/Ambrosius_Paul_Speiser
In a standard packed 4-bit representation, there are 16 states (four bits for each digit) with 10 tetrades and 6 pseudo-tetrades, whereas in more densely packed schemes such as Hertz, Chen–Ho or DPD encodings there are fewer—e.g., only 24 unused states in 1024 states (10 bits for three digits). /wiki/Tetrade_(computing)
Cowlishaw, Mike F. (2015) [1981, 2008]. "General Decimal Arithmetic". Retrieved 2016-01-02. /wiki/Mike_F._Cowlishaw
Evans, David Silvester (March 1961). "Chapter Four: Ancillary Equipment: Output-drive and parity-check relays for digitizers". Digital Data: Their derivation and reduction for analysis and process control (1 ed.). London, UK: Hilger & Watts Ltd / Interscience Publishers. pp. 46–64 [56–57]. Retrieved 2020-05-24. (8+82 pages) (NB. The 4-bit 8421 BCD code with an extra parity bit applied as least significant bit to achieve odd parity of the resulting 5-bit code is also known as Ferranti code.) https://books.google.com/books?id=WOIJAAAAMAAJ
Lala, Parag K. (2007). Principles of Modern Digital Design. John Wiley & Sons. pp. 20–25. ISBN 978-0-470-07296-7. 978-0-470-07296-7
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Kämmerer, Wilhelm [in German] (May 1969). "II.15. Struktur: Informationsdarstellung im Automaten". Written at Jena, Germany. In Frühauf, Hans [in German]; Kämmerer, Wilhelm; Schröder, Kurz; Winkler, Helmut (eds.). Digitale Automaten – Theorie, Struktur, Technik, Programmieren. Elektronisches Rechnen und Regeln (in German). Vol. 5 (1 ed.). Berlin, Germany: Akademie-Verlag GmbH. p. 161. License no. 202-100/416/69. Order no. 4666 ES 20 K 3. (NB. A second edition 1973 exists as well.) https://de.wikipedia.org/wiki/Wilhelm_K%C3%A4mmerer
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Code states (shown in black) outside the decimal range 0–9 indicate additional states of the non-BCD variant of the code. In the BCD code variant discussed here, they are pseudo-tetrades.
Kautz, William H. (June 1954). "IV. Examples A. Binary Codes for Decimals, n = 4". Optimized Data Encoding for Digital Computers. Convention Record of the I.R.E., 1954 National Convention, Part 4 - Electronic Computers and Information Theory. Session 19: Information Theory III - Speed and Computation. Stanford Research Institute, Stanford, California, USA: I.R.E. pp. 47–57 [49, 51–52, 57]. Archived from the original on 2020-07-03. Retrieved 2020-07-03. p. 52: […] The last column [of Table II], labeled "Best," gives the maximum fraction possible with any code—namely 0.60—half again better than any conventional code. This extremal is reached with the ten heavily-marked vertices of the graph of Fig. 4 for n = 4, or, in fact, with any set of ten code combinations which include all eight with an even (or all eight with an odd) number of "1's." The second and third rows of Table II list the average and peak decimal change per undetected single binary error, and have been derived using the equations of Sec. II for Δ1 and δ1. The confusion index for decimals using the criterion of "decimal change," is taken to be cij = |i − j| i,j = 0, 1, … 9. Again, the "Best" arrangement possible (the same for average and peak), one of which is shown in Fig. 4, is substantially better than the conventional codes. […] Fig. 4 Minimum-confusion code for decimals. […] δ1=2 Δ1=15 […] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] (11 pages) (NB. Besides the combinatorial set of 4-bit BCD "minimum-confusion codes for decimals", of which the author illustrates only one explicitly (here reproduced as code I) in form of a 4-bit graph, the author also shows a 16-state 4-bit "binary code for analog data" in form of a code table, which, however, is not discussed here. The code II shown here is a modification of code I discussed by Berger.) /wiki/William_H._Kautz
Chinal, Jean P. (January 1973). "Codes". Written at Paris, France. Design Methods for Digital Systems. Translated by Preston, Alan; Summer, Arthur (1st English ed.). Berlin, Germany: Akademie-Verlag / Springer-Verlag. p. 46. doi:10.1007/978-3-642-86187-1_3. ISBN 978-0-387-05871-9. License No. 202-100/542/73. Order No. 7617470(6047) ES 19 B 1 / 20 K 3. Retrieved 2020-06-21. (xviii+506 pages) (NB. The French 1967 original book was named "Techniques Booléennes et Calculateurs Arithmétiques", published by Éditions Dunod [fr].) 978-0-387-05871-9
Military Handbook: Encoders - Shaft Angle To Digital (PDF). United States Department of Defense. 1991-09-30. MIL-HDBK-231A. Archived (PDF) from the original on 2020-07-25. Retrieved 2020-07-25. (NB. Supersedes MIL-HDBK-231(AS) (1970-07-01).) http://everyspec.com/MIL-HDBK/MIL-HDBK-0200-0299/download.php?spec=MIL_HDBK_231A.1809.pdf
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Kämmerer, Wilhelm [in German] (May 1969). "II.15. Struktur: Informationsdarstellung im Automaten". Written at Jena, Germany. In Frühauf, Hans [in German]; Kämmerer, Wilhelm; Schröder, Kurz; Winkler, Helmut (eds.). Digitale Automaten – Theorie, Struktur, Technik, Programmieren. Elektronisches Rechnen und Regeln (in German). Vol. 5 (1 ed.). Berlin, Germany: Akademie-Verlag GmbH. p. 161. License no. 202-100/416/69. Order no. 4666 ES 20 K 3. (NB. A second edition 1973 exists as well.) https://de.wikipedia.org/wiki/Wilhelm_K%C3%A4mmerer
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
The Aiken code is one of several 2 4 2 1 codes. It is also known as 2* 4 2 1 code. /wiki/Aiken_code
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Kämmerer, Wilhelm [in German] (May 1969). "II.15. Struktur: Informationsdarstellung im Automaten". Written at Jena, Germany. In Frühauf, Hans [in German]; Kämmerer, Wilhelm; Schröder, Kurz; Winkler, Helmut (eds.). Digitale Automaten – Theorie, Struktur, Technik, Programmieren. Elektronisches Rechnen und Regeln (in German). Vol. 5 (1 ed.). Berlin, Germany: Akademie-Verlag GmbH. p. 161. License no. 202-100/416/69. Order no. 4666 ES 20 K 3. (NB. A second edition 1973 exists as well.) https://de.wikipedia.org/wiki/Wilhelm_K%C3%A4mmerer
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Code states (shown in black) outside the decimal range 0–9 indicate additional states of the non-BCD variant of the code. In the BCD code variant discussed here, they are pseudo-tetrades.
Kautz, William H. (June 1954). "IV. Examples A. Binary Codes for Decimals, n = 4". Optimized Data Encoding for Digital Computers. Convention Record of the I.R.E., 1954 National Convention, Part 4 - Electronic Computers and Information Theory. Session 19: Information Theory III - Speed and Computation. Stanford Research Institute, Stanford, California, USA: I.R.E. pp. 47–57 [49, 51–52, 57]. Archived from the original on 2020-07-03. Retrieved 2020-07-03. p. 52: […] The last column [of Table II], labeled "Best," gives the maximum fraction possible with any code—namely 0.60—half again better than any conventional code. This extremal is reached with the ten heavily-marked vertices of the graph of Fig. 4 for n = 4, or, in fact, with any set of ten code combinations which include all eight with an even (or all eight with an odd) number of "1's." The second and third rows of Table II list the average and peak decimal change per undetected single binary error, and have been derived using the equations of Sec. II for Δ1 and δ1. The confusion index for decimals using the criterion of "decimal change," is taken to be cij = |i − j| i,j = 0, 1, … 9. Again, the "Best" arrangement possible (the same for average and peak), one of which is shown in Fig. 4, is substantially better than the conventional codes. […] Fig. 4 Minimum-confusion code for decimals. […] δ1=2 Δ1=15 […] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] (11 pages) (NB. Besides the combinatorial set of 4-bit BCD "minimum-confusion codes for decimals", of which the author illustrates only one explicitly (here reproduced as code I) in form of a 4-bit graph, the author also shows a 16-state 4-bit "binary code for analog data" in form of a code table, which, however, is not discussed here. The code II shown here is a modification of code I discussed by Berger.) /wiki/William_H._Kautz
Code states (shown in black) outside the decimal range 0–9 indicate additional states of the non-BCD variant of the code. In the BCD code variant discussed here, they are pseudo-tetrades.
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Stopper, Herbert (March 1960). Written at Litzelstetten, Germany. Runge, Wilhelm Tolmé (ed.). "Ermittlung des Codes und der logischen Schaltung einer Zähldekade". Telefunken-Zeitung (TZ) - Technisch-Wissenschaftliche Mitteilungen der Telefunken GMBH (in German). 33 (127). Berlin, Germany: Telefunken: 13–19. (7 pages) /wiki/Wilhelm_Tolm%C3%A9_Runge
Borucki, Lorenz; Dittmann, Joachim (1971) [July 1970, 1966, Autumn 1965]. "2.3 Gebräuchliche Codes in der digitalen Meßtechnik". Written at Krefeld / Karlsruhe, Germany. Digitale Meßtechnik: Eine Einführung (in German) (2 ed.). Berlin / Heidelberg, Germany: Springer-Verlag. pp. 10–23 [12–14]. doi:10.1007/978-3-642-80560-8. ISBN 3-540-05058-2. LCCN 75-131547. ISBN 978-3-642-80561-5. (viii+252 pages) 1st edition 3-540-05058-2
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
The Jump-at-8 code is also known as unsymmetrical 2 4 2 1 code.
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Stopper, Herbert (March 1960). Written at Litzelstetten, Germany. Runge, Wilhelm Tolmé (ed.). "Ermittlung des Codes und der logischen Schaltung einer Zähldekade". Telefunken-Zeitung (TZ) - Technisch-Wissenschaftliche Mitteilungen der Telefunken GMBH (in German). 33 (127). Berlin, Germany: Telefunken: 13–19. (7 pages) /wiki/Wilhelm_Tolm%C3%A9_Runge
Borucki, Lorenz; Dittmann, Joachim (1971) [July 1970, 1966, Autumn 1965]. "2.3 Gebräuchliche Codes in der digitalen Meßtechnik". Written at Krefeld / Karlsruhe, Germany. Digitale Meßtechnik: Eine Einführung (in German) (2 ed.). Berlin / Heidelberg, Germany: Springer-Verlag. pp. 10–23 [12–14]. doi:10.1007/978-3-642-80560-8. ISBN 3-540-05058-2. LCCN 75-131547. ISBN 978-3-642-80561-5. (viii+252 pages) 1st edition 3-540-05058-2
Kautz, William H. (June 1954). "IV. Examples A. Binary Codes for Decimals, n = 4". Optimized Data Encoding for Digital Computers. Convention Record of the I.R.E., 1954 National Convention, Part 4 - Electronic Computers and Information Theory. Session 19: Information Theory III - Speed and Computation. Stanford Research Institute, Stanford, California, USA: I.R.E. pp. 47–57 [49, 51–52, 57]. Archived from the original on 2020-07-03. Retrieved 2020-07-03. p. 52: […] The last column [of Table II], labeled "Best," gives the maximum fraction possible with any code—namely 0.60—half again better than any conventional code. This extremal is reached with the ten heavily-marked vertices of the graph of Fig. 4 for n = 4, or, in fact, with any set of ten code combinations which include all eight with an even (or all eight with an odd) number of "1's." The second and third rows of Table II list the average and peak decimal change per undetected single binary error, and have been derived using the equations of Sec. II for Δ1 and δ1. The confusion index for decimals using the criterion of "decimal change," is taken to be cij = |i − j| i,j = 0, 1, … 9. Again, the "Best" arrangement possible (the same for average and peak), one of which is shown in Fig. 4, is substantially better than the conventional codes. […] Fig. 4 Minimum-confusion code for decimals. […] δ1=2 Δ1=15 […] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] (11 pages) (NB. Besides the combinatorial set of 4-bit BCD "minimum-confusion codes for decimals", of which the author illustrates only one explicitly (here reproduced as code I) in form of a 4-bit graph, the author also shows a 16-state 4-bit "binary code for analog data" in form of a code table, which, however, is not discussed here. The code II shown here is a modification of code I discussed by Berger.) /wiki/William_H._Kautz
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Chinal, Jean P. (January 1973). "Codes". Written at Paris, France. Design Methods for Digital Systems. Translated by Preston, Alan; Summer, Arthur (1st English ed.). Berlin, Germany: Akademie-Verlag / Springer-Verlag. p. 46. doi:10.1007/978-3-642-86187-1_3. ISBN 978-0-387-05871-9. License No. 202-100/542/73. Order No. 7617470(6047) ES 19 B 1 / 20 K 3. Retrieved 2020-06-21. (xviii+506 pages) (NB. The French 1967 original book was named "Techniques Booléennes et Calculateurs Arithmétiques", published by Éditions Dunod [fr].) 978-0-387-05871-9
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
White, Garland S. (October 1953). "Coded Decimal Number Systems for Digital Computers". Proceedings of the Institute of Radio Engineers. 41 (10). Institute of Radio Engineers (IRE): 1450–1452. doi:10.1109/JRPROC.1953.274330. eISSN 2162-6634. ISSN 0096-8390. S2CID 51674710. (3 pages) /wiki/Proceedings_of_the_Institute_of_Radio_Engineers
Kautz, William H. (June 1954). "IV. Examples A. Binary Codes for Decimals, n = 4". Optimized Data Encoding for Digital Computers. Convention Record of the I.R.E., 1954 National Convention, Part 4 - Electronic Computers and Information Theory. Session 19: Information Theory III - Speed and Computation. Stanford Research Institute, Stanford, California, USA: I.R.E. pp. 47–57 [49, 51–52, 57]. Archived from the original on 2020-07-03. Retrieved 2020-07-03. p. 52: […] The last column [of Table II], labeled "Best," gives the maximum fraction possible with any code—namely 0.60—half again better than any conventional code. This extremal is reached with the ten heavily-marked vertices of the graph of Fig. 4 for n = 4, or, in fact, with any set of ten code combinations which include all eight with an even (or all eight with an odd) number of "1's." The second and third rows of Table II list the average and peak decimal change per undetected single binary error, and have been derived using the equations of Sec. II for Δ1 and δ1. The confusion index for decimals using the criterion of "decimal change," is taken to be cij = |i − j| i,j = 0, 1, … 9. Again, the "Best" arrangement possible (the same for average and peak), one of which is shown in Fig. 4, is substantially better than the conventional codes. […] Fig. 4 Minimum-confusion code for decimals. […] δ1=2 Δ1=15 […] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] (11 pages) (NB. Besides the combinatorial set of 4-bit BCD "minimum-confusion codes for decimals", of which the author illustrates only one explicitly (here reproduced as code I) in form of a 4-bit graph, the author also shows a 16-state 4-bit "binary code for analog data" in form of a code table, which, however, is not discussed here. The code II shown here is a modification of code I discussed by Berger.) /wiki/William_H._Kautz
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
"Different Types of Binary Codes". Electronic Hub. 2019-05-01 [2015-01-28]. Section 2.4 5211 Code. Archived from the original on 2020-05-18. Retrieved 2020-08-04. https://www.electronicshub.org/disclaimer/
Kämmerer, Wilhelm [in German] (May 1969). "II.15. Struktur: Informationsdarstellung im Automaten". Written at Jena, Germany. In Frühauf, Hans [in German]; Kämmerer, Wilhelm; Schröder, Kurz; Winkler, Helmut (eds.). Digitale Automaten – Theorie, Struktur, Technik, Programmieren. Elektronisches Rechnen und Regeln (in German). Vol. 5 (1 ed.). Berlin, Germany: Akademie-Verlag GmbH. p. 161. License no. 202-100/416/69. Order no. 4666 ES 20 K 3. (NB. A second edition 1973 exists as well.) https://de.wikipedia.org/wiki/Wilhelm_K%C3%A4mmerer
Paul, Matthias R. (1995-08-10) [1994]. "Unterbrechungsfreier Schleifencode" [Continuous loop code]. 1.02 (in German). Retrieved 2008-02-11. (NB. The author called this code Schleifencode (English: "loop code"). It differs from Gray BCD code only in the encoding of state 0 to make it a cyclic unit-distance code for full-circle rotatory slip ring applications. Avoiding the all-zero code pattern allows for loop self-testing and to use the data lines for uninterrupted power distribution.) http://www.uni-bonn.de/~uzs180/download/mpbcd102.zip
Gray, Frank (1953-03-17) [1947-11-13]. Pulse Code Communication (PDF). New York, USA: Bell Telephone Laboratories, Incorporated. U.S. patent 2,632,058. Serial No. 785697. Archived (PDF) from the original on 2020-08-05. Retrieved 2020-08-05. (13 pages) /wiki/Frank_Gray_(researcher)
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Kämmerer, Wilhelm [in German] (May 1969). "II.15. Struktur: Informationsdarstellung im Automaten". Written at Jena, Germany. In Frühauf, Hans [in German]; Kämmerer, Wilhelm; Schröder, Kurz; Winkler, Helmut (eds.). Digitale Automaten – Theorie, Struktur, Technik, Programmieren. Elektronisches Rechnen und Regeln (in German). Vol. 5 (1 ed.). Berlin, Germany: Akademie-Verlag GmbH. p. 161. License no. 202-100/416/69. Order no. 4666 ES 20 K 3. (NB. A second edition 1973 exists as well.) https://de.wikipedia.org/wiki/Wilhelm_K%C3%A4mmerer
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Code states (shown in black) outside the decimal range 0–9 indicate additional states of the non-BCD variant of the code. In the BCD code variant discussed here, they are pseudo-tetrades.
Glixon, Harry Robert (March 1957). "Can You Take Advantage of the Cyclic Binary-Decimal Code?". Control Engineering. 4 (3). Technical Publishing Company, a division of Dun-Donnelley Publishing Corporation, Dun & Bradstreet Corp.: 87–91. ISSN 0010-8049. (5 pages) https://books.google.com/books?id=-_5IAQAAIAAJ
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Kämmerer, Wilhelm [in German] (May 1969). "II.15. Struktur: Informationsdarstellung im Automaten". Written at Jena, Germany. In Frühauf, Hans [in German]; Kämmerer, Wilhelm; Schröder, Kurz; Winkler, Helmut (eds.). Digitale Automaten – Theorie, Struktur, Technik, Programmieren. Elektronisches Rechnen und Regeln (in German). Vol. 5 (1 ed.). Berlin, Germany: Akademie-Verlag GmbH. p. 161. License no. 202-100/416/69. Order no. 4666 ES 20 K 3. (NB. A second edition 1973 exists as well.) https://de.wikipedia.org/wiki/Wilhelm_K%C3%A4mmerer
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Ledley, Robert Steven; Rotolo, Louis S.; Wilson, James Bruce (1960). "Part 4. Logical Design of Digital-Computer Circuitry; Chapter 15. Serial Arithmetic Operations; Chapter 15-7. Additional Topics". Digital Computer and Control Engineering (PDF). McGraw-Hill Electrical and Electronic Engineering Series (1 ed.). New York, USA: McGraw-Hill Book Company, Inc. (printer: The Maple Press Company, York, Pennsylvania, USA). pp. 517–518. ISBN 0-07036981-X. ISSN 2574-7916. LCCN 59015055. OCLC 1033638267. OL 5776493M. SBN 07036981-X. . ark:/13960/t72v3b312. Archived (PDF) from the original on 2021-02-19. Retrieved 2021-02-19. p. 517: […] The cyclic code is advantageous mainly in the use of relay circuits, for then a sticky relay will not give a false state as it is delayed in going from one cyclic number to the next. There are many other cyclic codes that have this property. […] [12] (xxiv+835+1 pages) (NB. Ledley classified the described cyclic code as a cyclic decimal-coded binary code.) 0-07036981-X07036981-X
Chinal, Jean P. (January 1973). "Codes". Written at Paris, France. Design Methods for Digital Systems. Translated by Preston, Alan; Summer, Arthur (1st English ed.). Berlin, Germany: Akademie-Verlag / Springer-Verlag. p. 46. doi:10.1007/978-3-642-86187-1_3. ISBN 978-0-387-05871-9. License No. 202-100/542/73. Order No. 7617470(6047) ES 19 B 1 / 20 K 3. Retrieved 2020-06-21. (xviii+506 pages) (NB. The French 1967 original book was named "Techniques Booléennes et Calculateurs Arithmétiques", published by Éditions Dunod [fr].) 978-0-387-05871-9
Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16. http://www.quadibloc.com/comp/cp0203.htm
Klar, Rainer (1970-02-01). "1.5.3 Konvertierung binär verschlüsselter Dezimalzahlen" [1.5.3 Conversion of binary coded decimal numbers]. Digitale Rechenautomaten – Eine Einführung [Digital Computers – An Introduction]. Sammlung Göschen (in German). Vol. 1241/1241a (1 ed.). Berlin, Germany: Walter de Gruyter & Co. / G. J. Göschen'sche Verlagsbuchhandlung [de]. pp. 17, 21. ISBN 3-11-083160-0. . Archiv-Nr. 7990709. Archived from the original on 2020-04-18. Retrieved 2020-04-13. (205 pages) (NB. A 2019 reprint of the first edition is available under ISBN 3-11002793-3, 978-3-11002793-8. A reworked and expanded 4th edition exists as well.) 3-11-083160-0
Klar, Rainer (1989) [1988-10-01]. "1.4 Codes: Binär verschlüsselte Dezimalzahlen" [1.4 Codes: Binary coded decimal numbers]. Digitale Rechenautomaten – Eine Einführung in die Struktur von Computerhardware [Digital Computers – An Introduction into the structure of computer hardware]. Sammlung Göschen (in German). Vol. 2050 (4th reworked ed.). Berlin, Germany: Walter de Gruyter & Co. pp. 25, 28, 38–39. ISBN 3-11011700-2. p. 25: […] Die nicht erlaubten 0/1-Muster nennt man auch Pseudodezimalen. […] (320 pages) 3-11011700-2
Petherick, Edward John (October 1953). A Cyclic Progressive Binary-coded-decimal System of Representing Numbers (Technical Note MS15). Farnborough, UK: Royal Aircraft Establishment (RAE). (4 pages) (NB. Sometimes referred to as A Cyclic-Coded Binary-Coded-Decimal System of Representing Numbers.) /wiki/Royal_Aircraft_Establishment
Petherick, Edward John; Hopkins, A. J. (1958). Some Recently Developed Digital Devices for Encoding the Rotations of Shafts (Technical Note MS21). Farnborough, UK: Royal Aircraft Establishment (RAE). /wiki/Royal_Aircraft_Establishment
The Petherick code is also known as Royal Aircraft Establishment (RAE) code. /wiki/Petherick_code
O'Brien, Joseph A. (May 1956) [1955-11-15, 1955-06-23]. "Cyclic Decimal Codes for Analogue to Digital Converters". Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 75 (2). Bell Telephone Laboratories, Whippany, New Jersey, USA: 120–122. doi:10.1109/TCE.1956.6372498. ISSN 0097-2452. S2CID 51657314. Paper 56-21. Archived from the original on 2020-05-18. Retrieved 2020-05-18. (3 pages) (NB. This paper was prepared for presentation at the AIEE Winter General Meeting, New York, USA, 1956-01-30 to 1956-02-03.) https://web.archive.org/web/20200518075301/https://pdfslide.net/documents/cyclic-decimal-codes-for-analogue-to-digital-converters.html
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
The O'Brien code type I is also known as Watts code or Watts reflected decimal (WRD) code. /wiki/O%27Brien_code_type_I
Ledley, Robert Steven; Rotolo, Louis S.; Wilson, James Bruce (1960). "Part 4. Logical Design of Digital-Computer Circuitry; Chapter 15. Serial Arithmetic Operations; Chapter 15-7. Additional Topics". Digital Computer and Control Engineering (PDF). McGraw-Hill Electrical and Electronic Engineering Series (1 ed.). New York, USA: McGraw-Hill Book Company, Inc. (printer: The Maple Press Company, York, Pennsylvania, USA). pp. 517–518. ISBN 0-07036981-X. ISSN 2574-7916. LCCN 59015055. OCLC 1033638267. OL 5776493M. SBN 07036981-X. . ark:/13960/t72v3b312. Archived (PDF) from the original on 2021-02-19. Retrieved 2021-02-19. p. 517: […] The cyclic code is advantageous mainly in the use of relay circuits, for then a sticky relay will not give a false state as it is delayed in going from one cyclic number to the next. There are many other cyclic codes that have this property. […] [12] (xxiv+835+1 pages) (NB. Ledley classified the described cyclic code as a cyclic decimal-coded binary code.) 0-07036981-X07036981-X
Tompkins, Howard E. (September 1956) [1956-07-16]. "Unit-Distance Binary-Decimal Codes for Two-Track Commutation". IRE Transactions on Electronic Computers. Correspondence. EC-5 (3). Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA: 139. doi:10.1109/TEC.1956.5219934. ISSN 0367-9950. Archived from the original on 2020-05-18. Retrieved 2020-05-18. (1 page) https://web.archive.org/web/20200518083051/https://dokumen.tips/documents/unit-distance-binary-decimal-codes-for-two-track-commutation.html
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Lippel, Bernhard (December 1955). "A Decimal Code for Analog-to-Digital Conversion". IRE Transactions on Electronic Computers. EC-4 (4): 158–159. doi:10.1109/TEC.1955.5219487. ISSN 0367-9950. (2 pages) /wiki/IRE_Transactions_on_Electronic_Computers
Susskind, Alfred Kriss; Ward, John Erwin (1958-03-28) [1957, 1956]. "III.F. Unit-Distance Codes / VI.E.2. Reflected Binary Codes". Written at Cambridge, Massachusetts, USA. In Susskind, Alfred Kriss (ed.). Notes on Analog-Digital Conversion Techniques. Technology Books in Science and Engineering. Vol. 1 (3 ed.). New York, USA: Technology Press of the Massachusetts Institute of Technology / John Wiley & Sons, Inc. / Chapman & Hall, Ltd. pp. 3-7–3-8 [3-7], 3-10–3-16 [3-13–3-16], 6-65–6-60 [6-60]. (x+416+2 pages) (NB. The contents of the book was originally prepared by staff members of the Servomechanisms Laboraratory, Department of Electrical Engineering, MIT, for Special Summer Programs held in 1956 and 1957. The code Susskind actually presented in his work as "reading-type code" is shown as code type II here, whereas the type I code is a minor derivation with the two most significant bit columns swapped to better illustrate symmetries.) /wiki/Technology_Press_of_the_Massachusetts_Institute_of_Technology
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
O'Brien, Joseph A. (May 1956) [1955-11-15, 1955-06-23]. "Cyclic Decimal Codes for Analogue to Digital Converters". Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 75 (2). Bell Telephone Laboratories, Whippany, New Jersey, USA: 120–122. doi:10.1109/TCE.1956.6372498. ISSN 0097-2452. S2CID 51657314. Paper 56-21. Archived from the original on 2020-05-18. Retrieved 2020-05-18. (3 pages) (NB. This paper was prepared for presentation at the AIEE Winter General Meeting, New York, USA, 1956-01-30 to 1956-02-03.) https://web.archive.org/web/20200518075301/https://pdfslide.net/documents/cyclic-decimal-codes-for-analogue-to-digital-converters.html
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Tompkins, Howard E. (September 1956) [1956-07-16]. "Unit-Distance Binary-Decimal Codes for Two-Track Commutation". IRE Transactions on Electronic Computers. Correspondence. EC-5 (3). Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA: 139. doi:10.1109/TEC.1956.5219934. ISSN 0367-9950. Archived from the original on 2020-05-18. Retrieved 2020-05-18. (1 page) https://web.archive.org/web/20200518083051/https://dokumen.tips/documents/unit-distance-binary-decimal-codes-for-two-track-commutation.html
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Archived from the original on 2020-07-16. Retrieved 2020-05-11. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.) 978-1-349-01419-4333-13360-9
Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. p. 50. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.) 3-87145-272-6
Military Handbook: Encoders - Shaft Angle To Digital (PDF). United States Department of Defense. 1991-09-30. MIL-HDBK-231A. Archived (PDF) from the original on 2020-07-25. Retrieved 2020-07-25. (NB. Supersedes MIL-HDBK-231(AS) (1970-07-01).) http://everyspec.com/MIL-HDBK/MIL-HDBK-0200-0299/download.php?spec=MIL_HDBK_231A.1809.pdf
The Excess-3 Gray code is also known as Gray–Stibitz code. /wiki/Excess-3_Gray_code
Code states (shown in black) outside the decimal range 0–9 indicate additional states of the non-BCD variant of the code. In the BCD code variant discussed here, they are pseudo-tetrades.
Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16. http://www.quadibloc.com/comp/cp0203.htm
Yuen, Chun-Kwong (December 1977). "A New Representation for Decimal Numbers". IEEE Transactions on Computers. C-26 (12): 1286–1288. doi:10.1109/TC.1977.1674792. S2CID 40879271. Archived from the original on 2020-08-08. Retrieved 2020-08-08. https://dl.acm.org/doi/10.1109/TC.1977.1674792
Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16. http://www.quadibloc.com/comp/cp0203.htm
Yuen, Chun-Kwong (December 1977). "A New Representation for Decimal Numbers". IEEE Transactions on Computers. C-26 (12): 1286–1288. doi:10.1109/TC.1977.1674792. S2CID 40879271. Archived from the original on 2020-08-08. Retrieved 2020-08-08. https://dl.acm.org/doi/10.1109/TC.1977.1674792
Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16. http://www.quadibloc.com/comp/cp0203.htm
Lucal, Harold M. (December 1959). "Arithmetic Operations for Digital Computers Using a Modified Reflected Binary". IRE Transactions on Electronic Computers. EC-8 (4): 449–458. doi:10.1109/TEC.1959.5222057. ISSN 0367-9950. S2CID 206673385. (10 pages) https://ieeexplore.ieee.org/document/5222057
Kautz, William H. (June 1954). "IV. Examples A. Binary Codes for Decimals, n = 4". Optimized Data Encoding for Digital Computers. Convention Record of the I.R.E., 1954 National Convention, Part 4 - Electronic Computers and Information Theory. Session 19: Information Theory III - Speed and Computation. Stanford Research Institute, Stanford, California, USA: I.R.E. pp. 47–57 [49, 51–52, 57]. Archived from the original on 2020-07-03. Retrieved 2020-07-03. p. 52: […] The last column [of Table II], labeled "Best," gives the maximum fraction possible with any code—namely 0.60—half again better than any conventional code. This extremal is reached with the ten heavily-marked vertices of the graph of Fig. 4 for n = 4, or, in fact, with any set of ten code combinations which include all eight with an even (or all eight with an odd) number of "1's." The second and third rows of Table II list the average and peak decimal change per undetected single binary error, and have been derived using the equations of Sec. II for Δ1 and δ1. The confusion index for decimals using the criterion of "decimal change," is taken to be cij = |i − j| i,j = 0, 1, … 9. Again, the "Best" arrangement possible (the same for average and peak), one of which is shown in Fig. 4, is substantially better than the conventional codes. […] Fig. 4 Minimum-confusion code for decimals. […] δ1=2 Δ1=15 […] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] (11 pages) (NB. Besides the combinatorial set of 4-bit BCD "minimum-confusion codes for decimals", of which the author illustrates only one explicitly (here reproduced as code I) in form of a 4-bit graph, the author also shows a 16-state 4-bit "binary code for analog data" in form of a code table, which, however, is not discussed here. The code II shown here is a modification of code I discussed by Berger.) /wiki/William_H._Kautz
Kautz, William H. (June 1954). "IV. Examples A. Binary Codes for Decimals, n = 4". Optimized Data Encoding for Digital Computers. Convention Record of the I.R.E., 1954 National Convention, Part 4 - Electronic Computers and Information Theory. Session 19: Information Theory III - Speed and Computation. Stanford Research Institute, Stanford, California, USA: I.R.E. pp. 47–57 [49, 51–52, 57]. Archived from the original on 2020-07-03. Retrieved 2020-07-03. p. 52: […] The last column [of Table II], labeled "Best," gives the maximum fraction possible with any code—namely 0.60—half again better than any conventional code. This extremal is reached with the ten heavily-marked vertices of the graph of Fig. 4 for n = 4, or, in fact, with any set of ten code combinations which include all eight with an even (or all eight with an odd) number of "1's." The second and third rows of Table II list the average and peak decimal change per undetected single binary error, and have been derived using the equations of Sec. II for Δ1 and δ1. The confusion index for decimals using the criterion of "decimal change," is taken to be cij = |i − j| i,j = 0, 1, … 9. Again, the "Best" arrangement possible (the same for average and peak), one of which is shown in Fig. 4, is substantially better than the conventional codes. […] Fig. 4 Minimum-confusion code for decimals. […] δ1=2 Δ1=15 […] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] (11 pages) (NB. Besides the combinatorial set of 4-bit BCD "minimum-confusion codes for decimals", of which the author illustrates only one explicitly (here reproduced as code I) in form of a 4-bit graph, the author also shows a 16-state 4-bit "binary code for analog data" in form of a code table, which, however, is not discussed here. The code II shown here is a modification of code I discussed by Berger.) /wiki/William_H._Kautz
Berger, Erich R. (1962). "1.3.3. Die Codierung von Zahlen". Written at Karlsruhe, Germany. In Steinbuch, Karl W. (ed.). Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 68–75. LCCN 62-14511. (NB. The shown Kautz code (II), containing all eight available binary states with an odd count of 1s, is a slight modification of the original Kautz code (I), containing all eight states with an even count of 1s, so that inversion of the most-significant bits will create a 9s complement.) /wiki/Karl_W._Steinbuch
Susskind, Alfred Kriss; Ward, John Erwin (1958-03-28) [1957, 1956]. "III.F. Unit-Distance Codes / VI.E.2. Reflected Binary Codes". Written at Cambridge, Massachusetts, USA. In Susskind, Alfred Kriss (ed.). Notes on Analog-Digital Conversion Techniques. Technology Books in Science and Engineering. Vol. 1 (3 ed.). New York, USA: Technology Press of the Massachusetts Institute of Technology / John Wiley & Sons, Inc. / Chapman & Hall, Ltd. pp. 3-7–3-8 [3-7], 3-10–3-16 [3-13–3-16], 6-65–6-60 [6-60]. (x+416+2 pages) (NB. The contents of the book was originally prepared by staff members of the Servomechanisms Laboraratory, Department of Electrical Engineering, MIT, for Special Summer Programs held in 1956 and 1957. The code Susskind actually presented in his work as "reading-type code" is shown as code type II here, whereas the type I code is a minor derivation with the two most significant bit columns swapped to better illustrate symmetries.) /wiki/Technology_Press_of_the_Massachusetts_Institute_of_Technology
Susskind, Alfred Kriss; Ward, John Erwin (1958-03-28) [1957, 1956]. "III.F. Unit-Distance Codes / VI.E.2. Reflected Binary Codes". Written at Cambridge, Massachusetts, USA. In Susskind, Alfred Kriss (ed.). Notes on Analog-Digital Conversion Techniques. Technology Books in Science and Engineering. Vol. 1 (3 ed.). New York, USA: Technology Press of the Massachusetts Institute of Technology / John Wiley & Sons, Inc. / Chapman & Hall, Ltd. pp. 3-7–3-8 [3-7], 3-10–3-16 [3-13–3-16], 6-65–6-60 [6-60]. (x+416+2 pages) (NB. The contents of the book was originally prepared by staff members of the Servomechanisms Laboraratory, Department of Electrical Engineering, MIT, for Special Summer Programs held in 1956 and 1957. The code Susskind actually presented in his work as "reading-type code" is shown as code type II here, whereas the type I code is a minor derivation with the two most significant bit columns swapped to better illustrate symmetries.) /wiki/Technology_Press_of_the_Massachusetts_Institute_of_Technology
In a similar fashion, multiple characters were often packed into machine words on minicomputers, see IBM SQUOZE and DEC RADIX 50. /wiki/Word_(computer_architecture)
Dewar, Robert Berriedale Keith; Smosna, Matthew (1990). Microprocessors - A Programmer's View (1 ed.). Courant Institute, New York University, New York, USA: McGraw-Hill Publishing Company. p. 14. ISBN 0-07-016638-2. LCCN 89-77320. (xviii+462 pages) 0-07-016638-2
In a similar fashion, multiple characters were often packed into machine words on minicomputers, see IBM SQUOZE and DEC RADIX 50. /wiki/Word_(computer_architecture)
"Chapter 8: Decimal Instructions". IBM System/370 Principles of Operation. IBM. March 1980. /wiki/IBM
"Chapter 3: Data Representation". PDP-11 Architecture Handbook. Digital Equipment Corporation. 1983. /wiki/Digital_Equipment_Corporation
VAX-11 Architecture Handbook. Digital Equipment Corporation. 1985. /wiki/Digital_Equipment_Corporation
"ILE RPG Reference". http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/c0925083170.htm
6-bit for older machines.
Two for older machines.
The values shown for C016 and D016 are for code page 037.
"IBM 1401/1440/1460/1410/7010 Character Code Chart in BCD Order" (PDF). https://ibm-1401.info/Van1401-CodeChart.pdf
VAX-11 Architecture Handbook. Digital Equipment Corporation. 1985. /wiki/Digital_Equipment_Corporation
"6502 Instruction Set". Archived from the original on 2018-05-08. http://www.masswerk.at/6502/6502_instruction_set.html
"NMOS 6502 Opcodes". Archived from the original on 2016-01-14. https://web.archive.org/web/20160114001557/http://www.6502.org/tutorials/6502opcodes.html
"The 68000's Instruction Set" (PDF). Archived (PDF) from the original on 2023-11-20. Retrieved 2023-11-21. (58 pages) http://www.tigernt.com/onlineDoc/68000.pdf
Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (PDF). Intel. March 2013. Section 4.7. Archived (PDF) from the original on 2013-04-02. Retrieved 2013-04-23. http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
"4.7 BCD and packed BCD integers". Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture (PDF). Version 072. Vol. 1. Intel Corporation. 2020-05-27 [1997]. pp. 3–2, 4-9–4-11 [4-10]. 253665-072US. Archived (PDF) from the original on 2020-08-06. Retrieved 2020-08-06. p. 4-10: […] When operating on BCD integers in general-purpose registers, the BCD values can be unpacked (one BCD digit per byte) or packed (two BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low halfbyte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and subtraction, but must be zero during multiplication and division. Packed BCD integers allow two BCD digits to be contained in one byte. Here, the digit in the high half-byte is more significant than the digit in the low half-byte. […] When operating on BCD integers in x87 FPU data registers, BCD values are packed in an 80-bit format and referred to as decimal integers. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The least-significant digit is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative; bits 0 through 6 of byte 10 are don't care bits). Negative decimal integers are not stored in two's complement form; they are distinguished from positive decimal integers only by the sign bit. The range of decimal integers that can be encoded in this format is −1018 + 1 to 1018 − 1. The decimal integer format exists in memory only. When a decimal integer is loaded in an x87 FPU data register, it is automatically converted to the double-extended-precision floating-point format. All decimal integers are exactly representable in double extended-precision format. […] [13] https://software.intel.com/content/dam/develop/public/us/en/documents/253665-sdm-vol-1.pdf
Jones, Douglas W. (2015-11-25) [1999]. "BCD Arithmetic, a tutorial". Arithmetic Tutorials. Iowa City, Iowa, USA: The University of Iowa, Department of Computer Science. Retrieved 2016-01-03. /wiki/Douglas_W._Jones
University of Alicante. "A Cordic-based Architecture for High Performance Decimal Calculations" (PDF). IEEE. Archived (PDF) from the original on 2010-01-05. Retrieved 2015-08-15. http://rua.ua.es/dspace/bitstream/10045/11826/1/VF-016519.pdf
"Decimal CORDIC Rotation based on Selection by Rounding: Algorithm and Architecture" (PDF). British Computer Society. Archived (PDF) from the original on 2022-10-09. Retrieved 2015-08-14. http://faculties.sbu.ac.ir/~jaberipur/Papers/Journals/19.pdf
Mathur, Aditya P. (1989). Introduction to Microprocessors (3 ed.). Tata McGraw-Hill Publishing Company Limited. ISBN 978-0-07-460222-5. 978-0-07-460222-5
3GPP TS 29.002: Mobile Application Part (MAP) specification (Technical report). 2013. sec. 17.7.8 Common data types. http://www.3gpp.org/ftp/Specs/html-info/29002.htm
"Signalling Protocols and Switching (SPS) Guidelines for using Abstract Syntax Notation One (ASN.1) in telecommunication application protocols" (PDF). p. 15. Archived (PDF) from the original on 2013-12-04. http://www.etsi.org/deliver/etsi_etr/001_099/060/02_60/etr_060e02p.pdf
"XOM Mobile Application Part (XMAP) Specification" (PDF). p. 93. Archived from the original (PDF) on 2015-02-21. Retrieved 2013-06-27. https://web.archive.org/web/20150221103429/http://www.openss7.org/specs/xmap.pdf
"Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3. (3GPP TS 24.501 version 16.10.0 Release 16) TS 24.501 release 16.10.0" (PDF). ETSI and 3GPP. Archived (PDF) from the original on 2022-02-17. Retrieved 2022-02-26. (TS 24.501) https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.10.00_60/ts_124501v161000p.pdf
"Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5G; Numbering, addressing and identification (3GPP TS 23.003 version 16.8.0 Release 16)" (PDF). ETSI and 3GPP. Archived (PDF) from the original on 2022-02-26. Retrieved 2022-02-26. (TS 23.003) https://www.etsi.org/deliver/etsi_ts/123000_123099/123003/16.08.00_60/ts_123003v160800p.pdf
In a standard packed 4-bit representation, there are 16 states (four bits for each digit) with 10 tetrades and 6 pseudo-tetrades, whereas in more densely packed schemes such as Hertz, Chen–Ho or DPD encodings there are fewer—e.g., only 24 unused states in 1024 states (10 bits for three digits). /wiki/Tetrade_(computing)
In a standard packed 4-bit representation, there are 16 states (four bits for each digit) with 10 tetrades and 6 pseudo-tetrades, whereas in more densely packed schemes such as Hertz, Chen–Ho or DPD encodings there are fewer—e.g., only 24 unused states in 1024 states (10 bits for three digits). /wiki/Tetrade_(computing)
"Timer Counter Circuits in an IBM PC" (PDF). www.se.ecu.edu.au. Archived from the original (PDF) on 2008-10-10. Retrieved 2022-05-22. (7 pages) https://web.archive.org/web/20081010064411/http://www.se.ecu.edu.au/units/ens1242/lectures/ens_Notes_08.pdf
MC6818 datasheet
Gottschalk v. Benson, 409 U.S. 63, 72 (1972). /wiki/Gottschalk_v._Benson