Allelic exclusion has been observed most often in genes for cell surface receptors and has been extensively studied in immune cells such as B lymphocytes. Allelic exclusion of immunoglobulin (Ig) heavy chain and light chain genes in B cells forms the genetic basis for the presence of only a single type of antigen receptor on a given B lymphocyte, which is central in explaining the ‘one B cell — one antibody’ rule. The variable domain of the B-cell antigen receptor is encoded by the V, (D), and J gene segments, the recombination of which gives rise to Ig gene allelic exclusion. V(D)J recombination occurs imprecisely, so that while transcripts from both alleles are expressed, only one is able to give rise to a functional surface antigen receptor. If no successful rearrangement occurs on either chromosome, the cell dies.
In the stochastic model, while the Ig rearrangement is proposed to be very efficient, the probability of functional allelic rearrangement is assumed to be very low as compared to the probability of non-functional rearrangement. As a result, successful recombination of more than one functional Ig allele in one B cell statistically occurs very infrequently.
In the asynchronous recombination models, the recombination process is controlled by timing of recombination-activating gene (RAG) recombinase and accessibility of each Ig allele within the chromatin structure.
The feedback inhibition model is similar to the asynchronous recombination mode, but it emphasizes the mechanisms that maintain the rearrangement asynchrony. This model suggests that a recombination which gives rise to a functional B cell surface receptor will cause a series of signals which suppress further recombination. Without these signals, allelic rearrangement will carry on. The classic feedback model is empirically corroborated by observed recombination ratios.
The allelic exclusion of light chain genes Igκ and Igλ is a process that is controlled by the monoallelic initiation of V(D)J recombination. While little is known about the mechanism leading to the allelic exclusion of Igλ genes, the Igκ locus is generally inactivated by RAG-mediated deletion of the exon Cκ. The V(D)J recombination step is a random and non-specific process that occurs one allele at a time where segments V, (D) and J are rearranged to encode the variable region, resulting in a fraction of functional genes with a productive V(D)J region. Allelic exclusion is then enforced via feedback inhibition where the functional Ig gene inhibits V(D)J rearrangement of the second allele. While this feedback mechanism is mainly achieved through inhibition of the juxtaposition of V and D-J segments, the down-regulation of transcription and suppression of RAG accessibility also plays a role.
Korochkin LI, Grossman A (1981). "The Phenomenon of Allelic Exclusion". Gene Interactions in Development. Monographs on Theoretical and Applied Genetics. Vol. 4. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 108–124. doi:10.1007/978-3-642-81477-8_4. ISBN 978-3-642-81479-2. 978-3-642-81479-2
Levin-Klein R, Bergman Y (December 2014). "Epigenetic regulation of monoallelic rearrangement (allelic exclusion) of antigen receptor genes". Frontiers in Immunology. 5: 625. doi:10.3389/fimmu.2014.00625. PMC 4257082. PMID 25538709. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257082
Pelanda R (April 2014). "Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity?". Current Opinion in Immunology. 27: 53–9. doi:10.1016/j.coi.2014.01.012. PMC 3972342. PMID 24549093. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972342
Levin-Klein R, Bergman Y (December 2014). "Epigenetic regulation of monoallelic rearrangement (allelic exclusion) of antigen receptor genes". Frontiers in Immunology. 5: 625. doi:10.3389/fimmu.2014.00625. PMC 4257082. PMID 25538709. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257082
Schroeder HW, Imboden JB, Torres RM (2019-01-01). "Chapter 4: Antigen Receptor Genes, Gene Products, and Coreceptors". In Rich R, Fleisher TA, Shearer WT, Schroeder HW (eds.). Clinical Immunology (Fifth ed.). London: Elsevier. pp. 55–77.e1. doi:10.1016/b978-0-7020-6896-6.00004-1. ISBN 978-0-7020-6896-6. 978-0-7020-6896-6
Jackson A, Kondilis HD, Khor B, Sleckman BP, Krangel MS (February 2005). "Regulation of T cell receptor beta allelic exclusion at a level beyond accessibility". Nature Immunology. 6 (2): 189–97. doi:10.1038/ni1157. PMID 15640803. S2CID 24687496. /wiki/Doi_(identifier)
Levin-Klein R, Bergman Y (December 2014). "Epigenetic regulation of monoallelic rearrangement (allelic exclusion) of antigen receptor genes". Frontiers in Immunology. 5: 625. doi:10.3389/fimmu.2014.00625. PMC 4257082. PMID 25538709. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257082
Burnet FM (1959). The clonal selection theory of acquired immunity. Nashville, Temessee: Vanderbilt University Press. doi:10.5962/bhl.title.8281. https://www.biodiversitylibrary.org/bibliography/8281
Vettermann C, Schlissel MS (September 2010). "Allelic exclusion of immunoglobulin genes: models and mechanisms". Immunological Reviews. 237 (1): 22–42. doi:10.1111/j.1600-065x.2010.00935.x. PMC 2928156. PMID 20727027. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928156
Coleclough C, Perry RP, Karjalainen K, Weigert M (April 1981). "Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression". Nature. 290 (5805): 372–8. Bibcode:1981Natur.290..372C. doi:10.1038/290372a0. PMID 6783959. S2CID 2267279. /wiki/Bibcode_(identifier)
Vettermann C, Schlissel MS (September 2010). "Allelic exclusion of immunoglobulin genes: models and mechanisms". Immunological Reviews. 237 (1): 22–42. doi:10.1111/j.1600-065x.2010.00935.x. PMC 2928156. PMID 20727027. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928156
Vettermann C, Schlissel MS (September 2010). "Allelic exclusion of immunoglobulin genes: models and mechanisms". Immunological Reviews. 237 (1): 22–42. doi:10.1111/j.1600-065x.2010.00935.x. PMC 2928156. PMID 20727027. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928156
Vettermann C, Schlissel MS (September 2010). "Allelic exclusion of immunoglobulin genes: models and mechanisms". Immunological Reviews. 237 (1): 22–42. doi:10.1111/j.1600-065x.2010.00935.x. PMC 2928156. PMID 20727027. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928156
Matthias P (2001-11-23). Faculty Opinions recommendation of Asynchronous replication and allelic exclusion in the immune system. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature (Report). doi:10.3410/f.1002314.23155. /wiki/Doi_(identifier)
"Immunoglobulin Heavy Chain Variable, Diversity, and Joining Region Gene Rearrangement". National Cancer Institute Thesaurus. https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C124221
"Immunoglobulin Heavy Chain Variable, Diversity, and Joining Region Gene Rearrangement". National Cancer Institute Thesaurus. https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C124221
Mostoslavsky R, Alt FW, Rajewsky K (September 2004). "The lingering enigma of the allelic exclusion mechanism". Cell. 118 (5): 539–44. doi:10.1016/j.cell.2004.08.023. PMID 15339659. https://doi.org/10.1016%2Fj.cell.2004.08.023
Brady BL, Steinel NC, Bassing CH (October 2010). "Antigen receptor allelic exclusion: an update and reappraisal". Journal of Immunology. 185 (7): 3801–8. doi:10.4049/jimmunol.1001158. PMC 3008371. PMID 20858891. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008371
Capello L, Roppolo D, Jungo VP, Feinstein P, Rodriguez I (February 2009). "A common gene exclusion mechanism used by two chemosensory systems". The European Journal of Neuroscience. 29 (4): 671–8. doi:10.1111/j.1460-9568.2009.06630.x. PMC 3709462. PMID 19200072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709462
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Shykind BM, Rohani SC, O'Donnell S, Nemes A, Mendelsohn M, Sun Y, et al. (June 2004). "Gene switching and the stability of odorant receptor gene choice". Cell. 117 (6): 801–15. doi:10.1016/j.cell.2004.05.015. PMID 15186780. https://doi.org/10.1016%2Fj.cell.2004.05.015
Serizawa S, Ishii T, Nakatani H, Tsuboi A, Nagawa F, Asano M, et al. (July 2000). "Mutually exclusive expression of odorant receptor transgenes". Nature Neuroscience. 3 (7): 687–93. doi:10.1038/76641. PMID 10862701. S2CID 1019250. /wiki/Doi_(identifier)
Capello L, Roppolo D, Jungo VP, Feinstein P, Rodriguez I (February 2009). "A common gene exclusion mechanism used by two chemosensory systems". The European Journal of Neuroscience. 29 (4): 671–8. doi:10.1111/j.1460-9568.2009.06630.x. PMC 3709462. PMID 19200072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709462
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Capello L, Roppolo D, Jungo VP, Feinstein P, Rodriguez I (February 2009). "A common gene exclusion mechanism used by two chemosensory systems". The European Journal of Neuroscience. 29 (4): 671–8. doi:10.1111/j.1460-9568.2009.06630.x. PMC 3709462. PMID 19200072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709462
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Capello L, Roppolo D, Jungo VP, Feinstein P, Rodriguez I (February 2009). "A common gene exclusion mechanism used by two chemosensory systems". The European Journal of Neuroscience. 29 (4): 671–8. doi:10.1111/j.1460-9568.2009.06630.x. PMC 3709462. PMID 19200072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709462
Capello L, Roppolo D, Jungo VP, Feinstein P, Rodriguez I (February 2009). "A common gene exclusion mechanism used by two chemosensory systems". The European Journal of Neuroscience. 29 (4): 671–8. doi:10.1111/j.1460-9568.2009.06630.x. PMC 3709462. PMID 19200072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709462
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Hosoya T, Maillard I, Engel JD (November 2010). "From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation". Immunological Reviews. 238 (1): 110–25. doi:10.1111/j.1600-065X.2010.00954.x. PMC 2965564. PMID 20969588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965564
Ho IC, Tai TS, Pai SY (February 2009). "GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation". Nature Reviews. Immunology. 9 (2): 125–35. doi:10.1038/nri2476. PMC 2998182. PMID 19151747. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998182
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (December 2003). "Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse". Science. 302 (5653): 2088–94. Bibcode:2003Sci...302.2088S. doi:10.1126/science.1089122. PMID 14593185. S2CID 26055164. https://doi.org/10.1126%2Fscience.1089122
Lewcock JW, Reed RR (January 2004). "A feedback mechanism regulates monoallelic odorant receptor expression". Proceedings of the National Academy of Sciences of the United States of America. 101 (4): 1069–74. Bibcode:2004PNAS..101.1069L. doi:10.1073/pnas.0307986100. PMC 327152. PMID 14732684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327152
Hosoya T, Maillard I, Engel JD (November 2010). "From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation". Immunological Reviews. 238 (1): 110–25. doi:10.1111/j.1600-065X.2010.00954.x. PMC 2965564. PMID 20969588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965564
Ho IC, Tai TS, Pai SY (February 2009). "GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation". Nature Reviews. Immunology. 9 (2): 125–35. doi:10.1038/nri2476. PMC 2998182. PMID 19151747. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998182
Monahan K, Lomvardas S (2015-11-13). "Monoallelic expression of olfactory receptors". Annual Review of Cell and Developmental Biology. 31 (1): 721–40. doi:10.1146/annurev-cellbio-100814-125308. PMC 4882762. PMID 26359778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882762
Wu GS, Bassing CH (August 2020). "Inefficient V(D)J recombination underlies monogenic T cell receptor β expression". Proceedings of the National Academy of Sciences of the United States of America. 117 (31): 18172–18174. Bibcode:2020PNAS..11718172W. doi:10.1073/pnas.2010077117. PMC 7414081. PMID 32690689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414081
Wu GS, Yang-Iott KS, Klink MA, Hayer KE, Lee KD, Bassing CH (September 2020). "Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion". The Journal of Experimental Medicine. 217 (9). doi:10.1084/jem.20200412. PMC 7478721. PMID 32526772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478721
Wu GS, Bassing CH (August 2020). "Inefficient V(D)J recombination underlies monogenic T cell receptor β expression". Proceedings of the National Academy of Sciences of the United States of America. 117 (31): 18172–18174. Bibcode:2020PNAS..11718172W. doi:10.1073/pnas.2010077117. PMC 7414081. PMID 32690689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414081
Wu GS, Yang-Iott KS, Klink MA, Hayer KE, Lee KD, Bassing CH (September 2020). "Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion". The Journal of Experimental Medicine. 217 (9). doi:10.1084/jem.20200412. PMC 7478721. PMID 32526772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478721
Wu GS, Bassing CH (August 2020). "Inefficient V(D)J recombination underlies monogenic T cell receptor β expression". Proceedings of the National Academy of Sciences of the United States of America. 117 (31): 18172–18174. Bibcode:2020PNAS..11718172W. doi:10.1073/pnas.2010077117. PMC 7414081. PMID 32690689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414081
Wu GS, Yang-Iott KS, Klink MA, Hayer KE, Lee KD, Bassing CH (September 2020). "Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion". The Journal of Experimental Medicine. 217 (9). doi:10.1084/jem.20200412. PMC 7478721. PMID 32526772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478721
Wu GS, Bassing CH (August 2020). "Inefficient V(D)J recombination underlies monogenic T cell receptor β expression". Proceedings of the National Academy of Sciences of the United States of America. 117 (31): 18172–18174. Bibcode:2020PNAS..11718172W. doi:10.1073/pnas.2010077117. PMC 7414081. PMID 32690689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414081
Wu GS, Yang-Iott KS, Klink MA, Hayer KE, Lee KD, Bassing CH (September 2020). "Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion". The Journal of Experimental Medicine. 217 (9). doi:10.1084/jem.20200412. PMC 7478721. PMID 32526772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478721