The single primordial beryllium isotope 9Be also undergoes a (n,2n) neutron reaction with neutron energies over about 1.9 MeV, to produce 8Be, which almost immediately breaks into two alpha particles. Thus, for high-energy neutrons, beryllium is a neutron multiplier, releasing more neutrons than it absorbs. This nuclear reaction is:
94Be + n → 2 42He + 2 n
62He has a half-life of only 0.8 seconds, β− is an electron, and 63Li has a high neutron absorption cross section. Tritium is a radioisotope of concern in nuclear reactor waste streams.
Both stable and unstable isotopes of beryllium are created in stars, but the radioisotopes do not last long. It is believed that the beryllium in the universe was created in the interstellar medium when cosmic rays induced fission in heavier elements found in interstellar gas and dust, a process called cosmic ray spallation. Natural beryllium is solely made up of the stable isotope beryllium-9. Beryllium is the only monoisotopic element with an even atomic number.
Beryllium is found in over 100 minerals, but most are uncommon to rare. The more common beryllium containing minerals include: bertrandite (Be4Si2O7(OH)2), beryl (Al2Be3Si6O18), chrysoberyl (Al2BeO4) and phenakite (Be2SiO4). Precious forms of beryl are aquamarine, red beryl and emerald.
The green color in gem-quality forms of beryl comes from varying amounts of chromium (about 2% for emerald).
The two main ores of beryllium, beryl and bertrandite, are found in Argentina, Brazil, India, Madagascar, Russia and the United States. Total world reserves of beryllium ore are greater than 400,000 tonnes.
The extraction of beryllium from its compounds is a difficult process due to its high affinity for oxygen at elevated temperatures, and its ability to reduce water when its oxide film is removed. Currently the United States, China and Kazakhstan are the only three countries involved in the industrial-scale extraction of beryllium. Kazakhstan produces beryllium from a concentrate stockpiled before the breakup of the Soviet Union around 1991. This resource had become nearly depleted by mid-2010s.
Production of beryllium in Russia was halted in 1997, and is planned to be resumed in the 2020s.
Beryllium hydroxide created using either the sinter or melt method is then converted into beryllium fluoride or beryllium chloride. To form the fluoride, aqueous ammonium hydrogen fluoride is added to beryllium hydroxide to yield a precipitate of ammonium tetrafluoroberyllate, which is heated to 1,000 °C (1,830 °F) to form beryllium fluoride. Heating the fluoride to 900 °C (1,650 °F) with magnesium forms finely divided beryllium, and additional heating to 1,300 °C (2,370 °F) creates the compact metal. Heating beryllium hydroxide forms beryllium oxide, which becomes beryllium chloride when combined with carbon and chlorine. Electrolysis of molten beryllium chloride is then used to obtain the metal.
Beryllium is a strong electron acceptor leading to Be bonding effects similar to hydrogen bonding.
Beryllium(II) forms few complexes with monodentate ligands because the water molecules in the aquo-ion, [Be(H2O)4]2+ are bound very strongly to the beryllium ion. Notable exceptions are the series of water-soluble complexes with the fluoride ion:
[Be(H2O)4]2+ + Beryllium(II) forms many complexes with bidentate ligands containing oxygen-donor atoms. The species [Be3O(H2PO4)6]2- is notable for having a 3-coordinate oxide ion at its center. Basic beryllium acetate, Be4O(OAc)6, has an oxide ion surrounded by a tetrahedron of beryllium atoms.
The formation of a complex is in competition with the metal ion-hydrolysis reaction and mixed complexes with both the anion and the hydroxide ion are also formed. For example, derivatives of the cyclic trimer are known, with a bidentate ligand replacing one or more pairs of water molecules.
Organometallic beryllium compounds are known to be highly reactive. Examples of known organoberyllium compounds are dineopentylberyllium, beryllocene (Cp2Be), diallylberyllium (by exchange reaction of diethyl beryllium with triallyl boron), bis(1,3-trimethylsilylallyl)beryllium, Be(mes)2, and (beryllium(I) complex) diberyllocene. Ligands can also be aryls and alkynyls.
Using an alcohol lamp, Wöhler heated alternating layers of beryllium chloride and potassium in a wired-shut platinum crucible. The above reaction immediately took place and caused the crucible to become white hot. Upon cooling and washing the resulting gray-black powder, he saw that it was made of fine particles with a dark metallic luster. The highly reactive potassium had been produced by the electrolysis of its compounds. He did not succeed to melt the beryllium particles.
Beryllium production saw a rapid increase during World War II due to the rising demand for hard beryllium-copper alloys and phosphors for fluorescent lights. Most early fluorescent lamps used zinc orthosilicate with varying content of beryllium to emit greenish light. Small additions of magnesium tungstate improved the blue part of the spectrum to yield an acceptable white light. Halophosphate-based phosphors replaced beryllium-based phosphors after beryllium was found to be toxic.
Pure beryllium metal did not become readily available until 1957, even though it had been used as an alloying metal to harden and toughen copper much earlier. Beryllium could be produced by reducing beryllium compounds such as beryllium chloride with metallic potassium or sodium. Currently, most beryllium is produced by reducing beryllium fluoride with magnesium. The price on the American market for vacuum-cast beryllium ingots was about $338 per pound ($745 per kilogram) in 2001.
Between 1998 and 2008, the world's production of beryllium had decreased from 343 to about 200 tonnes. It then increased to 230 metric tons by 2018, of which 170 tonnes came from the United States.
Because of its low atomic number and very low absorption for X-rays, the oldest and still one of the most important applications of beryllium is in radiation windows for X-ray tubes. Extreme demands are placed on purity and cleanliness of beryllium to avoid artifacts in the X-ray images. Thin beryllium foils are used as radiation windows for X-ray detectors, and their extremely low absorption minimizes the heating effects caused by high-intensity, low energy X-rays typical of synchrotron radiation. Vacuum-tight windows and beam-tubes for radiation experiments on synchrotrons are manufactured exclusively from beryllium. In scientific setups for various X-ray emission studies (e.g., energy-dispersive X-ray spectroscopy) the sample holder is usually made of beryllium because its emitted X-rays have much lower energies (≈100 eV) than X-rays from most studied materials.
The high elastic stiffness of beryllium has led to its extensive use in precision instrumentation, e.g. in inertial guidance systems and in the support mechanisms for optical systems. Beryllium-copper alloys were also applied as a hardening agent in "Jason pistols", which were used to strip the paint from the hulls of ships.
In sound amplification systems, the speed at which sound travels directly affects the resonant frequency of the amplifier, thereby influencing the range of audible high-frequency sounds. Beryllium stands out due to its exceptionally high speed of sound propagation compared to other metals. This unique property allows beryllium to achieve higher resonant frequencies, making it an ideal material for use as a diaphragm in high-quality loudspeakers.
Beryllium is non-magnetic. Therefore, tools fabricated out of beryllium-based materials are used by naval or military explosive ordnance disposal teams for work on or near naval mines, since these mines commonly have magnetic fuzes. They are also found in maintenance and construction materials near magnetic resonance imaging (MRI) machines because of the high magnetic fields generated.
High purity beryllium can be used in nuclear reactors as a moderator, reflector, or as cladding on fuel elements.
Thin plates or foils of beryllium are sometimes used in nuclear weapon designs as the very outer layer of the plutonium pits in the primary stages of thermonuclear bombs, placed to surround the fissile material. These layers of beryllium are good "pushers" for the implosion of the plutonium-239, and they are good neutron reflectors, just as in beryllium-moderated nuclear reactors.
The low weight and high rigidity of beryllium make it useful as a material for high-frequency speaker drivers. Because beryllium is expensive (many times more than titanium), hard to shape due to its brittleness, and toxic if mishandled, beryllium tweeters are limited to high-end home, pro audio, and public address applications. Some high-fidelity products have been fraudulently claimed to be made of the material.
Approximately 35 micrograms of beryllium is found in the average human body, an amount not considered harmful. Beryllium is chemically similar to magnesium and therefore can displace it from enzymes, which causes them to malfunction. Because Be2+ is a highly charged and small ion, it can easily get into many tissues and cells, where it specifically targets cell nuclei, inhibiting many enzymes, including those used for synthesizing DNA. Its toxicity is exacerbated by the fact that the body has no means to control beryllium levels, and once inside the body, beryllium cannot be removed.
Exposure to beryllium in the workplace can lead to a sensitized immune response, and over time development of berylliosis. NIOSH in the United States researches these effects in collaboration with a major manufacturer of beryllium products. NIOSH also conducts genetic research on sensitization and CBD, independently of this collaboration.
Beryllium may be found in coal slag. When the slag is formulated into an abrasive agent for blasting paint and rust from hard surfaces, the beryllium can become airborne and become a source of exposure.
Although the use of beryllium compounds in fluorescent lighting tubes was discontinued in 1949, potential for exposure to beryllium exists in the nuclear and aerospace industries, in the refining of beryllium metal and the melting of beryllium-containing alloys, in the manufacturing of electronic devices, and in the handling of other beryllium-containing material.
Early researchers undertook the highly hazardous practice of identifying beryllium and its various compounds from its sweet taste. A modern test for beryllium in air and on surfaces has been developed and published as an international voluntary consensus standard, ASTM D7202. The procedure uses dilute ammonium bifluoride for dissolution and fluorescence detection with beryllium bound to sulfonated hydroxybenzoquinoline, allowing up to 100 times more sensitive detection than the recommended limit for beryllium concentration in the workplace. Fluorescence increases with increasing beryllium concentration. The new procedure has been successfully tested on a variety of surfaces and is effective for the dissolution and detection of refractory beryllium oxide and siliceous beryllium in minute concentrations (ASTM D7458). The NIOSH Manual of Analytical Methods contains methods for measuring occupational exposures to beryllium.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Hoover, Mark D.; Castorina, Bryan T.; Finch, Gregory L.; Rothenberg, Simon J. (October 1989). "Determination of the Oxide Layer Thickness on Beryllium Metal Particles". American Industrial Hygiene Association Journal. 50 (10): 550–553. doi:10.1080/15298668991375146. ISSN 0002-8894. PMID 2801503. https://www.tandfonline.com/doi/full/10.1080/15298668991375146
Tomastik, C.; Werner, W.; Stori, H. (2005). "Oxidation of beryllium—a scanning Auger investigation". Nucl. Fusion. 45 (9): 1061. Bibcode:2005NucFu..45.1061T. doi:10.1088/0029-5515/45/9/005. S2CID 111381179. https://iopscience.iop.org/article/10.1088/0029-5515/45/9/005
Maček, Andrej; McKenzie Semple, J. (1969). "Experimental burning rates and combustion mechanisms of single beryllium particles". Symposium (International) on Combustion. 12 (1): 71–81. doi:10.1016/S0082-0784(69)80393-0. https://linkinghub.elsevier.com/retrieve/pii/S0082078469803930
Puchta, Ralph (2011). "A brighter beryllium". Nature Chemistry. 3 (5): 416. Bibcode:2011NatCh...3..416P. doi:10.1038/nchem.1033. PMID 21505503. https://doi.org/10.1038%2Fnchem.1033
Chong, S; Lee, KS; Chung, MJ; Han, J; Kwon, OJ; Kim, TS (January 2006). "Pneumoconiosis: comparison of imaging and pathologic findings". Radiographics. 26 (1): 59–77. doi:10.1148/rg.261055070. PMID 16418244. /wiki/Doi_(identifier)
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
"Standard Atomic Weights: Beryllium". CIAAW. 2013. https://www.ciaaw.org/beryllium.htm
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Marion, J. B.; Levin, J. S.; Cranberg, L. (15 June 1959). "Elastic and Nonelastic Neutron Cross Sections for Beryllium". Physical Review. 114 (6): 1584–1589. Bibcode:1959PhRv..114.1584M. doi:10.1103/PhysRev.114.1584. https://journals.aps.org/pr/abstract/10.1103/PhysRev.114.1584
Kothari, L. S.; Singwi, K. S. (1 January 1957). "Slowing down of neutrons in beryllium from 1·44 eV to thermal energy". Journal of Nuclear Energy (1954). 5 (3): 342–356. doi:10.1016/0891-3919(57)90033-5. ISSN 0891-3919. https://linkinghub.elsevier.com/retrieve/pii/0891391957900335
DiJulio, Douglas D.; Lee, Yong Joong; Muhrer, Gunter (20 October 2020). "Impact of crystallite size on the performance of a beryllium reflector". Journal of Neutron Research. 22 (2–3): 275–279. arXiv:1912.03039. doi:10.3233/JNR-190135. ISSN 1023-8166. https://journals.sagepub.com/doi/full/10.3233/JNR-190135
Hausner, Henry H. (1965). "Nuclear Properties". Beryllium its Metallurgy and Properties. University of California Press. p. 239. Archived from the original on 27 July 2020. Retrieved 30 October 2021. https://books.google.com/books?id=FCnUN45cL1cC&pg=PA239
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
Hausner, Henry H. (1965). "Nuclear Properties". Beryllium its Metallurgy and Properties. University of California Press. p. 239. Archived from the original on 27 July 2020. Retrieved 30 October 2021. https://books.google.com/books?id=FCnUN45cL1cC&pg=PA239
Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, NY, 2011, ISBN 0-486-48238-3, pp. 32–33. /wiki/ISBN_(identifier)
"Neutron Sources" (PDF). Nuclear Regulatory Commission. 13 October 2010. Retrieved 5 March 2025. https://www.nrc.gov/docs/ml1122/ML11229A704.pdf
Halstead, Matthew R. (March 2011). Characterization of the Energy Spectrum at the Indiana University NREP Neutron Source (Thesis). Air Force Institute of Technology. Retrieved 5 March 2025. https://www.researchgate.net/publication/235029687
Tomberlin, T. A. (15 November 2004). "Beryllium – A Unique Material in Nuclear Applications" (PDF). Idaho National Laboratory. Idaho National Engineering and Environmental Laboratory. Archived from the original (PDF) on 22 December 2015. https://web.archive.org/web/20151222143703/https://inldigitallibrary.inl.gov/sti/2808485.pdf
"About Beryllium". US Department of Energy. Archived from the original on 22 December 2021. Retrieved 22 December 2021. https://www.energy.gov/ehss/about-beryllium
Ekspong, G. (1992). Physics: 1981–1990. World Scientific. pp. 172 ff. ISBN 978-981-02-0729-8. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-981-02-0729-8
Boesgaard, A. M. (1 December 1976). "Beryllium in main-sequence stars". Astrophysical Journal. 210: 466–474. Bibcode:1976ApJ...210..466B. doi:10.1086/154849. /wiki/Bibcode_(identifier)
"Standard Atomic Weights: Beryllium". CIAAW. 2013. https://www.ciaaw.org/beryllium.htm
Peacock, J. A. (28 December 1998). Cosmological Physics (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511804533. ISBN 978-0-521-41072-4. 978-0-521-41072-4
Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han (23 February 2016). "Big bang nucleosynthesis: Present status". Reviews of Modern Physics. 88 (1): 015004. arXiv:1505.01076. Bibcode:2016RvMP...88a5004C. doi:10.1103/RevModPhys.88.015004. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.88.015004
Piñero García, F.; Ferro García, M.A.; Azahra, M. (2012). "7Be behaviour in the atmosphere of the city of Granada January 2005 to December 2009". Atmospheric Environment. 47: 84–91. doi:10.1016/j.atmosenv.2011.11.034. /wiki/Doi_(identifier)
Johnson, Bill (1993). "How to Change Nuclear Decay Rates". University of California, Riverside. Archived from the original on 29 June 2013. Retrieved 30 March 2008. http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/decay_rates.html
Arnett, David (1996). Supernovae and nucleosynthesis. Princeton University Press. p. 223. ISBN 978-0-691-01147-9. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-0-691-01147-9
Emsley 2001, p. 56. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
"Beryllium: Isotopes and Hydrology". University of Arizona, Tucson. Archived from the original on 26 May 2013. Retrieved 10 April 2011. http://web.sahra.arizona.edu/programs/isotopes/beryllium.html
Emsley 2001, p. 56. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Whitehead, N; Endo, S; Tanaka, K; Takatsuji, T; Hoshi, M; Fukutani, S; Ditchburn, Rg; Zondervan, A (February 2008). "A preliminary study on the use of (10)Be in forensic radioecology of nuclear explosion sites". Journal of Environmental Radioactivity. 99 (2): 260–70. doi:10.1016/j.jenvrad.2007.07.016. PMID 17904707. /wiki/Doi_(identifier)
Hansen, P. G.; Jensen, A. S.; Jonson, B. (1995). "Nuclear Halos". Annual Review of Nuclear and Particle Science. 45 (1): 591–634. Bibcode:1995ARNPS..45..591H. doi:10.1146/annurev.ns.45.120195.003111. https://doi.org/10.1146%2Fannurev.ns.45.120195.003111
"Search Minerals By Chemistry". www.mindat.org. Archived from the original on 6 August 2021. Retrieved 30 October 2021. https://www.mindat.org/chemsearch.php?cform_is_valid=1&inc=Be,&exc=&sub=Search+for+Minerals&cf_pager_page=1
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
Walsh, Kenneth A (2009). "Sources of Beryllium". Beryllium chemistry and processing. ASM International. pp. 20–26. ISBN 978-0-87170-721-5. Archived from the original on 13 May 2016. Retrieved 5 January 2016. 978-0-87170-721-5
Phillip Sabey (5 March 2006). "Distribution of major deposits". In Jessica Elzea Kogel; Nikhil C. Trivedi; James M. Barker; Stanley T. Krukowski (eds.). Industrial minerals & rocks: commodities, markets, and uses. pp. 265–269. ISBN 978-0-87335-233-8. Retrieved 5 January 2016. 978-0-87335-233-8
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
"Abundance in the sun". Mark Winter, The University of Sheffield and WebElements Ltd, UK. WebElements. Archived from the original on 27 August 2011. Retrieved 6 August 2011. https://web.archive.org/web/20110827013726/http://webelements.com/periodicity/abundance_sun/
O'Neil, Marydale J.; Heckelman, Patricia E.; Roman, Cherie B., eds. (2006). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (14th ed.). Whitehouse Station, NJ, USA: Merck Research Laboratories, Merck & Co., Inc. ISBN 978-0-911910-00-1. 978-0-911910-00-1
Emsley 2001, p. 59. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Emsley 2001, p. 59. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Emsley 2001, p. 59. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Emsley 2001, p. 59. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
"Abundance in oceans". Mark Winter, The University of Sheffield and WebElements Ltd, UK. WebElements. Archived from the original on 5 August 2011. Retrieved 6 August 2011. https://web.archive.org/web/20110805145627/http://www.webelements.com/periodicity/abundance_seawater/
"Abundance in stream water". Mark Winter, The University of Sheffield and WebElements Ltd, UK. WebElements. Archived from the original on 4 August 2011. Retrieved 6 August 2011. https://web.archive.org/web/20110804233559/http://www.webelements.com/periodicity/abundance_stream/
"Sources of Beryllium". Materion Corporation. Archived from the original on 24 December 2016. Retrieved 23 December 2016. https://beryllium.com/About-Beryllium/Sources%20of%20Beryllium.aspx
"Beryllim" Archived 3 July 2021 at the Wayback Machine in 2016 Minerals Yearbook. USGS (September 2018). https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/beryllium/myb1-2016-beryl.pdf
Уральский производитель изумрудов планирует выпускать стратегический металл бериллий Archived 11 October 2021 at the Wayback Machine. TASS.ru (15 May 2019) https://tass.ru/ural-news/6431308
"Russia restarts beryllium production after 20 years". Eurasian Business Briefing. 20 February 2015. Archived from the original on 31 July 2017. Retrieved 22 February 2018. http://www.eurasianbusinessbriefing.com/russia-restarts-beryllium-production-after-20-years/
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Boronski, Josef T.; Crumpton, Agamemnon E.; Wales, Lewis L.; Aldridge, Simon (16 June 2023). "Diberyllocene, a stable compound of Be(I) with a Be–Be bond". Science. 380 (6650): 1147–1149. Bibcode:2023Sci...380.1147B. doi:10.1126/science.adh4419. ISSN 0036-8075. PMID 37319227. S2CID 259166086. https://www.science.org/doi/10.1126/science.adh4419
Berthold, Chantsalmaa; Maurer, Johannes; Klerner, Lukas; Harder, Prof. Dr. Sjoerd; Buchner, Dr. Magnus R. (31 May 2024). "Formation, Structure and Reactivity of a Beryllium(0) Complex with Mgδ+−Beδ− Bond Polarization". Angewandte Chemie International Edition. 63 (35): e202408422. doi:10.1002/anie.202408422. /wiki/Doi_(identifier)
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 978-0-08-037941-8
Tomastik, C.; Werner, W.; Stori, H. (2005). "Oxidation of beryllium—a scanning Auger investigation". Nucl. Fusion. 45 (9): 1061. Bibcode:2005NucFu..45.1061T. doi:10.1088/0029-5515/45/9/005. S2CID 111381179. https://iopscience.iop.org/article/10.1088/0029-5515/45/9/005
Maček, Andrej; McKenzie Semple, J. (1969). "Experimental burning rates and combustion mechanisms of single beryllium particles". Symposium (International) on Combustion. 12 (1): 71–81. doi:10.1016/S0082-0784(69)80393-0. https://linkinghub.elsevier.com/retrieve/pii/S0082078469803930
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 978-0-08-037941-8
Wiberg, Egon; Holleman, Arnold Frederick (2001). Inorganic Chemistry. Elsevier. ISBN 978-0-12-352651-9. 978-0-12-352651-9
Wiberg, Egon; Holleman, Arnold Frederick (2001). Inorganic Chemistry. Elsevier. ISBN 978-0-12-352651-9. 978-0-12-352651-9
Fioressi, Silvina; Bacelo, Daniel E.; Binning, R.C. (June 2012). "A DFT study of dodecahedral beryllium silicide cage clusters". Chemical Physics Letters. 537: 75–79. Bibcode:2012CPL...537...75F. doi:10.1016/j.cplett.2012.04.002. https://linkinghub.elsevier.com/retrieve/pii/S000926141200468X
Hite, D.A.; Tang, S.-J.; Sprunger, P.T. (January 2003). "Reactive epitaxy of beryllium on Si(111)-(7×7)". Chemical Physics Letters. 367 (1–2): 129–135. Bibcode:2003CPL...367..129H. doi:10.1016/S0009-2614(02)01637-8. https://linkinghub.elsevier.com/retrieve/pii/S0009261402016378
Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 978-0-08-037941-8
Montero-Campillo, M. Merced; Mó, Otilia; Yáñez, Manuel; Alkorta, Ibon; Elguero, José (1 January 2019), van Eldik, Rudi; Puchta, Ralph (eds.), "Chapter Three - The beryllium bond", Advances in Inorganic Chemistry, Computational Chemistry, vol. 73, Academic Press, pp. 73–121, doi:10.1016/bs.adioch.2018.10.003, S2CID 140062833, retrieved 26 October 2022 https://www.sciencedirect.com/science/article/pii/S0898883818300394
Alderghi, Lucia; Gans, Peter; Midollini, Stefano; Vacca, Alberto (2000). Sykes, A.G; Cowley, Alan H. (eds.). "Aqueous Solution Chemistry of Beryllium". Advances in Inorganic Chemistry. 50. San Diego: Academic Press: 109–172. doi:10.1016/S0898-8838(00)50003-8. ISBN 978-0-12-023650-3. 978-0-12-023650-3
Bell, N.A. (1972). Advances in Inorganic Chemistry and Radiochemistry. Vol. 14. New York: Academic Press. pp. 256–277. doi:10.1016/S0065-2792(08)60008-4. ISBN 978-0-12-023614-5. 978-0-12-023614-5
Alderghi, Lucia; Gans, Peter; Midollini, Stefano; Vacca, Alberto (2000). Sykes, A.G; Cowley, Alan H. (eds.). "Aqueous Solution Chemistry of Beryllium". Advances in Inorganic Chemistry. 50. San Diego: Academic Press: 109–172. doi:10.1016/S0898-8838(00)50003-8. ISBN 978-0-12-023650-3. 978-0-12-023650-3
Raymond, Onyekachi; Perera, Lakshika; Brothers, Penelope J.; Henderson, William; Plieger, Paul G. (2015). "The chemistry and metallurgy of beryllium" (PDF). Chemistry in New Zealand. 79 (3): 137–143. https://nzic.org.nz/unsecure_files/cinz/2015-79-3.pdf
Kumberger, Otto; Schmidbaur, Hubert (December 1993). "Warum ist Beryllium so toxisch?". Chemie in unserer Zeit (in German). 27 (6): 310–316. doi:10.1002/ciuz.19930270611. ISSN 0009-2851. https://onlinelibrary.wiley.com/doi/10.1002/ciuz.19930270611
Kumberger, Otto; Schmidbaur, Hubert (December 1993). "Warum ist Beryllium so toxisch?". Chemie in unserer Zeit (in German). 27 (6): 310–316. doi:10.1002/ciuz.19930270611. ISSN 0009-2851. https://onlinelibrary.wiley.com/doi/10.1002/ciuz.19930270611
Rosenheim, Arthur; Lehmann, Fritz (1924). "Über innerkomplexe Beryllate". Liebigs Ann. Chem. 440: 153–166. doi:10.1002/jlac.19244400115. /wiki/Doi_(identifier)
Kumberger, Otto; Schmidbaur, Hubert (December 1993). "Warum ist Beryllium so toxisch?". Chemie in unserer Zeit (in German). 27 (6): 310–316. doi:10.1002/ciuz.19930270611. ISSN 0009-2851. https://onlinelibrary.wiley.com/doi/10.1002/ciuz.19930270611
Schmidt, M.; Bauer, A.; Schier, A.; Schmidtbauer, H (1997). "Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution". Inorganic Chemistry. 53b (10): 2040–2043. doi:10.1021/ic961410k. PMID 11669821. /wiki/Doi_(identifier)
Kumberger, Otto; Schmidbaur, Hubert (December 1993). "Warum ist Beryllium so toxisch?". Chemie in unserer Zeit (in German). 27 (6): 310–316. doi:10.1002/ciuz.19930270611. ISSN 0009-2851. https://onlinelibrary.wiley.com/doi/10.1002/ciuz.19930270611
Mederos, A.; Dominguez, S.; Chinea, E.; Brito, F.; Middolini, S.; Vacca, A. (1997). "Recent aspects of the coordination chemistry of the very toxic cation beryllium(II): The search for sequestering agents". Bol. Soc. Chil. Quim. 42: 281.
Kumberger, Otto; Schmidbaur, Hubert (December 1993). "Warum ist Beryllium so toxisch?". Chemie in unserer Zeit (in German). 27 (6): 310–316. doi:10.1002/ciuz.19930270611. ISSN 0009-2851. https://onlinelibrary.wiley.com/doi/10.1002/ciuz.19930270611
Mederos, A.; Dominguez, S.; Chinea, E.; Brito, F.; Middolini, S.; Vacca, A. (1997). "Recent aspects of the coordination chemistry of the very toxic cation beryllium(II): The search for sequestering agents". Bol. Soc. Chil. Quim. 42: 281.
Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. (2016). "Off the Beaten Track—A Hitchhiker's Guide to Beryllium Chemistry". Angew. Chem. Int. Ed. 55 (36): 10562–10576. doi:10.1002/anie.201601809. PMID 27364901. /wiki/Doi_(identifier)
Coates, G. E.; Francis, B. R. (1971). "Preparation of base-free beryllium alkyls from trialkylboranes. Dineopentylberyllium, bis((trimethylsilyl)methyl)beryllium, and an ethylberyllium hydride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1308. doi:10.1039/J19710001308. /wiki/Doi_(identifier)
Fischer, Ernst Otto; Hofmann, Hermann P. (1959). "Über Aromatenkomplexe von Metallen, XXV. Di-cyclopentadienyl-beryllium". Chemische Berichte. 92 (2): 482. doi:10.1002/cber.19590920233. /wiki/Doi_(identifier)
Nugent, K. W.; Beattie, J. K.; Hambley, T. W.; Snow, M. R. (1984). "A precise low-temperature crystal structure of Bis(cyclopentadienyl)beryllium". Australian Journal of Chemistry. 37 (8): 1601. doi:10.1071/CH9841601. S2CID 94408686. /wiki/Doi_(identifier)
Almenningen, A.; Haaland, Arne; Lusztyk, Janusz (1979). "The molecular structure of beryllocene, (C5H5)2Be. A reinvestigation by gas phase electron diffraction". Journal of Organometallic Chemistry. 170 (3): 271. doi:10.1016/S0022-328X(00)92065-5. /wiki/Doi_(identifier)
Wong, C. H.; Lee, T. Y.; Chao, K. J.; Lee, S. (1972). "Crystal structure of bis(cyclopentadienyl)beryllium at −120 °C". Acta Crystallographica Section B. 28 (6): 1662. Bibcode:1972AcCrB..28.1662W. doi:10.1107/S0567740872004820. /wiki/Bibcode_(identifier)
Wiegand, G.; Thiele, K.-H. (1974). "Ein Beitrag zur Existenz von Allylberyllium- und Allylaluminiumverbindungen". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 405: 101–108. doi:10.1002/zaac.19744050111. /wiki/Doi_(identifier)
Chmely, Stephen C.; Hanusa, Timothy P.; Brennessel, William W. (2010). "Bis(1,3-trimethylsilylallyl)beryllium". Angewandte Chemie International Edition. 49 (34): 5870–5874. doi:10.1002/anie.201001866. PMID 20575128. /wiki/Doi_(identifier)
Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. (2016). "Off the Beaten Track—A Hitchhiker's Guide to Beryllium Chemistry". Angew. Chem. Int. Ed. 55 (36): 10562–10576. doi:10.1002/anie.201601809. PMID 27364901. /wiki/Doi_(identifier)
Boronski, Josef T.; Crumpton, Agamemnon E.; Wales, Lewis L.; Aldridge, Simon (16 June 2023). "Diberyllocene, a stable compound of Be(I) with a Be–Be bond". Science. 380 (6650): 1147–1149. Bibcode:2023Sci...380.1147B. doi:10.1126/science.adh4419. ISSN 0036-8075. PMID 37319227. S2CID 259166086. https://www.science.org/doi/10.1126/science.adh4419
Ruhlandt-Senge, Karin; Bartlett, Ruth A.; Olmstead, Marilyn M.; Power, Philip P. (1993). "Synthesis and structural characterization of the beryllium compounds [Be(2,4,6-Me3C6H2)2(OEt2)], [Be{O(2,4,6-tert-Bu3C6H2)}2(OEt2)], and [Be{S(2,4,6-tert-Bu3C6H2)}2(THF)]⋅PhMe and determination of the structure of [BeCl2(OEt2)2]". Inorganic Chemistry. 32 (9): 1724–1728. doi:10.1021/ic00061a031. /wiki/Doi_(identifier)
Morosin, B.; Howatson, J. (1971). "The crystal structure of dimeric methyl-1-propynyl- beryllium-trimethylamine". Journal of Organometallic Chemistry. 29: 7–14. doi:10.1016/S0022-328X(00)87485-9. /wiki/Doi_(identifier)
Weeks 1968, p. 535. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Weeks 1968, p. 536. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Weeks 1968, p. 536. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Weeks 1968, p. 537. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Weeks 1968, p. 535. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Vauquelin, Louis-Nicolas (1798). "De l'Aiguemarine, ou Béril; et découverie d'une terre nouvelle dans cette pierre" [Aquamarine or beryl; and discovery of a new earth in this stone]. Annales de Chimie. 26: 155–169. Archived from the original on 27 April 2016. Retrieved 5 January 2016. https://books.google.com/books?id=dB8AAAAAMAAJ&pg=RA1-PA155
In a footnote on page 169 Archived 23 June 2016 at the Wayback Machine of (Vauquelin, 1798), the editors write: "(1) La propriété la plus caractéristique de cette terre, confirmée par les dernières expériences de notre collègue, étant de former des sels d'une saveur sucrée, nous proposons de l'appeler glucine, de γλυκυς, doux, γλυκύ, vin doux, γλυκαιτω, rendre doux ... Note des Rédacteurs." ((1) The most characteristic property of this earth, confirmed by the recent experiments of our colleague [Vauquelin], being to form salts with a sweet taste, we propose to call it glucine from γλυκυς, sweet, γλυκύ, sweet wine, γλυκαιτω, to make sweet ... Note of the editors.) https://books.google.com/books?id=dB8AAAAAMAAJ&pg=RA1-PA169
Weeks 1968, p. 538. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Miśkowiec, Paweł (April 2023). "Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century". Foundations of Chemistry. 25 (1): 29–51. doi:10.1007/s10698-022-09448-5. ISSN 1386-4238. https://doi.org/10.1007%2Fs10698-022-09448-5
Wöhler, Friedrich (1828). "Ueber das Beryllium und Yttrium" [On beryllium and yttrium]. Annalen der Physik und Chemie. 89 (8): 577–582. Bibcode:1828AnP....89..577W. doi:10.1002/andp.18280890805. Archived from the original on 27 May 2016. Retrieved 5 January 2016. /wiki/Friedrich_W%C3%B6hler
Robinson, Ann E. (6 December 2019). "Order From Confusion: International Chemical Standardization and the Elements, 1947-1990". Substantia: 83–99 Pages. doi:10.13128/SUBSTANTIA-498. https://riviste.fupress.net/index.php/subs/article/view/498
Holden, N. E. (2019). History of the origin of the chemical elements and their discoverers (No. BNL-211891-2019-COPA). Brookhaven National Lab.(BNL), Upton, NY (United States).
Wöhler, Friedrich (1828). "Ueber das Beryllium und Yttrium" [On beryllium and yttrium]. Annalen der Physik und Chemie. 89 (8): 577–582. Bibcode:1828AnP....89..577W. doi:10.1002/andp.18280890805. Archived from the original on 27 May 2016. Retrieved 5 January 2016. /wiki/Friedrich_W%C3%B6hler
Bussy, Antoine (1828). "D'une travail qu'il a entrepris sur le glucinium". Journal de Chimie Médicale (4): 456–457. Archived from the original on 22 May 2016. Retrieved 5 January 2016. https://books.google.com/books?id=pwUFAAAAQAAJ&pg=PA456
Weeks 1968, p. 539. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Enghag, P. (2004). "11. Sodium and Potassium". Encyclopedia of the elements. Wiley-VCH Weinheim. ISBN 978-3-527-30666-4. 978-3-527-30666-4
Weeks 1968, p. 539. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Weeks 1968, p. 539. - Weeks, Mary Elvira; Leichester, Henry M. (1968). Discovery of the Elements. Easton, PA: Journal of Chemical Education. LCCCN 68-15217. https://archive.org/details/discoveryoftheel002045mbp
Boillat, Johann (27 August 2016). From Raw Material to Strategic Alloys. The Case of the International Beryllium Industry (1919–1939). 1st World Congress on Business History, At Bergen – Norway. doi:10.13140/rg.2.2.35545.11363. Archived from the original on 30 October 2021. Retrieved 30 October 2021. https://www.researchgate.net/publication/309154800
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
O'Neil, Marydale J.; Heckelman, Patricia E.; Roman, Cherie B., eds. (2006). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (14th ed.). Whitehouse Station, NJ, USA: Merck Research Laboratories, Merck & Co., Inc. ISBN 978-0-911910-00-1. 978-0-911910-00-1
Kane, Raymond; Sell, Heinz (2001). "A Review of Early Inorganic Phosphors". Revolution in lamps: a chronicle of 50 years of progress. Fairmont Press. p. 98. ISBN 978-0-88173-378-5. Archived from the original on 7 May 2016. Retrieved 5 January 2016. 978-0-88173-378-5
Babu, R. S.; Gupta, C. K. (1988). "Beryllium Extraction – A Review". Mineral Processing and Extractive Metallurgy Review. 4: 39–94. doi:10.1080/08827508808952633. /wiki/Doi_(identifier)
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Hammond, C.R. (2003). "The Elements". CRC handbook of chemistry and physics (84th ed.). Boca Raton, FL: CRC Press. pp. 4–5. ISBN 978-0-8493-0595-5. Archived from the original on 13 March 2020. Retrieved 18 July 2019. 978-0-8493-0595-5
"Beryllium Statistics and Information". United States Geological Survey. Archived from the original on 16 September 2008. Retrieved 18 September 2008. https://minerals.usgs.gov/minerals/pubs/commodity/beryllium/
"Commodity Summary: Beryllium" (PDF). United States Geological Survey. Archived (PDF) from the original on 1 June 2010. Retrieved 16 May 2010. https://minerals.usgs.gov/minerals/pubs/commodity/beryllium/100300.pdf
"Commodity Summary 2000: Beryllium" (PDF). United States Geological Survey. Archived (PDF) from the original on 16 July 2010. Retrieved 16 May 2010. https://minerals.usgs.gov/minerals/pubs/commodity/beryllium/mcs-2010-beryl.pdf
"etymology online". Archived from the original on 30 October 2020. Retrieved 30 October 2021. https://www.etymonline.com/word/beryllium
"Encyclopædia Britannica". Archived from the original on 23 October 2021. Retrieved 30 October 2021. https://www.britannica.com/science/beryllium
"Elemental Matter". Archived from the original on 29 November 2020. Retrieved 30 October 2021. http://www.elementalmatter.info/element-beryllium.htm
Klaproth, Martin Heinrich, Beitrage zur Chemischen Kenntniss der Mineralkörper (Contribution to the chemical knowledge of mineral substances), vol. 3, (Berlin, (Germany): Heinrich August Rottmann, 1802), pages 78–79 Archived 26 April 2016 at the Wayback Machine: "Als Vauquelin der von ihm im Beryll und Smaragd entdeckten neuen Erde, wegen ihrer Eigenschaft, süsse Mittelsalze zu bilden, den Namen Glykine, Süsserde, beilegte, erwartete er wohl nicht, dass sich bald nachher eine anderweitige Erde finden würde, welche mit völlig gleichem Rechte Anspruch an diesen Namen machen können. Um daher keine Verwechselung derselben mit der Yttererde zu veranlassen, würde es vielleicht gerathen seyn, jenen Namen Glykine aufzugeben, und durch Beryllerde (Beryllina) zu ersetzen; welche Namensveränderung auch bereits vom Hrn. Prof. Link, und zwar aus dem Grunde empfohlen worden, weil schon ein Pflanzengeschlecht Glycine vorhanden ist." (When Vauquelin conferred – on account of its property of forming sweet salts – the name glycine, sweet-earth, on the new earth that had been found by him in beryl and smaragd, he certainly didn't expect that soon thereafter another earth would be found which with fully equal right could claim this name. Therefore, in order to avoid confusion of it with yttria-earth, it would perhaps be advisable to abandon this name glycine and replace it with beryl-earth (beryllina); which name change was also recommended by Prof. Link, and for the reason that a genus of plants, Glycine, already exists.) https://books.google.com/books?id=8A8KAAAAIAAJ&pg=PA78
Miśkowiec, Paweł (April 2023). "Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century". Foundations of Chemistry. 25 (1): 29–51. doi:10.1007/s10698-022-09448-5. ISSN 1386-4238. https://doi.org/10.1007%2Fs10698-022-09448-5
"4. Beryllium - Elementymology & Elements Multidict". elements.vanderkrogt.net. Retrieved 15 October 2024. https://elements.vanderkrogt.net/element.php?sym=Be
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
Veness, R.; Ramos, D.; Lepeule, P.; Rossi, A.; Schneider, G.; Blanchard, S. "Installation and commissioning of vacuum systems for the LHC particle detectors" (PDF). CERN. Archived (PDF) from the original on 14 November 2011. Retrieved 13 January 2012. http://accelconf.web.cern.ch/accelconf/PAC2009/papers/mo6rfp010.pdf
Wieman, H; Bieser, F.; Kleinfelder, S.; Matis, H. S.; Nevski, P.; Rai, G.; Smirnov, N. (2001). "A new inner vertex detector for STAR" (PDF). Nuclear Instruments and Methods in Physics Research Section A. 473 (1–2): 205. Bibcode:2001NIMPA.473..205W. doi:10.1016/S0168-9002(01)01149-4. S2CID 39909027. Archived (PDF) from the original on 17 October 2020. Retrieved 30 October 2021. https://digital.library.unt.edu/ark:/67531/metadc786424/m2/1/high_res_d/860449.pdf
Davis, Joseph R. (1998). "Beryllium". Metals handbook. ASM International. pp. 690–691. ISBN 978-0-87170-654-6. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-0-87170-654-6
Schwartz, Mel M. (2002). Encyclopedia of materials, parts, and finishes. CRC Press. p. 62. ISBN 978-1-56676-661-6. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-1-56676-661-6
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
"Museum of Mountain Bike Art & Technology: American Bicycle Manufacturing". Archived from the original on 20 July 2011. Retrieved 26 September 2011. https://web.archive.org/web/20110720022521/http://mombat.org/American.htm
Ward, Wayne. "Aluminium-Beryllium". Ret-Monitor. Archived from the original on 1 August 2010. Retrieved 18 July 2012. https://web.archive.org/web/20100801083918/http://www.ret-monitor.com/articles/967/aluminium-beryllium/
Collantine, Keith (8 February 2007). "Banned! – Beryllium". Archived from the original on 21 July 2012. Retrieved 18 July 2012. http://www.f1fanatic.co.uk/2007/02/08/banned-beryllium/
Geller, Elizabeth, ed. (2004). Concise Encyclopedia of Chemistry. New York City: McGraw-Hill. ISBN 978-0-07-143953-4. 978-0-07-143953-4
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Emsley 2001, p. 58. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
"Defence forces face rare toxic metal exposure risk". The Sydney Morning Herald. 1 February 2005. Archived from the original on 30 December 2007. Retrieved 8 August 2009. http://www.smh.com.au/news/National/Defence-forces-face-rare-toxic-metal-exposure-risk/2005/02/01/1107228681666.html
Reactor Material Specifications (Report). Oak Ridge National Laboratory. 1958. p. 227. Retrieved 14 July 2024. https://books.google.com/books?id=uSA1xJaSZO4C&dq=Beryllium+sound+propagation+compared+to+other+metals.&pg=PA227
"6 Common Uses Of Beryllium". Refractory Metals. 28 April 2020. Retrieved 14 July 2024. https://www.refractorymetal.org/6-common-uses-of-beryllium/
"Shure V15VxMR User's Guide". Shure. p. 2. https://pubs.shure.com/guide/V15VxMR/en-US
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
Parsonage, T. (2000). Beryllium metal matrix composites for aerospace and commercial applications. Materials science and technology, 16(7-8), 732-738.
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
"The Webb Space Telescope Will Rewrite Cosmic History. If It Works". Quanta Magazine. 3 December 2021. Archived from the original on 5 December 2021. Retrieved 5 December 2021. https://www.quantamagazine.org/why-nasas-james-webb-space-telescope-matters-so-much-20211203
Gardner, Jonathan P. (2007). "The James Webb Space Telescope" (PDF). Proceedings of Science. 52: 5. Bibcode:2007mru..confE...5G. doi:10.22323/1.052.0005. S2CID 261976160. Archived (PDF) from the original on 4 June 2016. Retrieved 15 January 2009. http://pos.sissa.it/archive/conferences/052/005/MRU_005.pdf
Werner, M. W.; Roellig, T. L.; Low, F. J.; Rieke, G. H.; Rieke, M.; Hoffmann, W. F.; Young, E.; Houck, J. R.; et al. (2004). "The Spitzer Space Telescope Mission". Astrophysical Journal Supplement. 154 (1): 1–9. arXiv:astro-ph/0406223. Bibcode:2004ApJS..154....1W. doi:10.1086/422992. S2CID 119379934. /wiki/ArXiv_(identifier)
Kojola, Kenneth; Lurie, William (9 August 1961). "The selection of low-magnetic alloys for EOD tools". Naval Weapons Plant Washington DC. Archived from the original on 23 August 2011. Retrieved 28 February 2010. https://web.archive.org/web/20110823130608/http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0263919
Dorsch, Jerry A. & Dorsch, Susan E. (2007). Understanding anesthesia equipment. Lippincott Williams & Wilkins. p. 891. ISBN 978-0-7817-7603-5. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-0-7817-7603-5
Sicius, Hermann (2024), "Alkaline Earth Metals: Elements of the Second Main Group", Handbook of the Chemical Elements, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 77–139, doi:10.1007/978-3-662-68921-9_2, ISBN 978-3-662-68920-2, retrieved 5 March 2025 978-3-662-68920-2
Beeston, J. M. (1971). Beryllium metal as a neutron moderator and reflector material. Nuclear engineering and design, 14(3), 445-474.
A. Tomberlin T. (2004). Beryllium-a unique material in nuclear applications. Idaho Falls, ID: Idaho National Laboratory.
Barnaby, Frank (1993). How nuclear weapons spread. Routledge. p. 35. ISBN 978-0-415-07674-6. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-0-415-07674-6
Barnaby, Frank (1993). How nuclear weapons spread. Routledge. p. 35. ISBN 978-0-415-07674-6. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-0-415-07674-6
Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, NY, 2011, ISBN 0-486-48238-3, pp. 32–33. /wiki/ISBN_(identifier)
Harmsen, J. G., Lewis, B. J., Pant, A., & Thompson, W. T. (2010, October). Beryllium brazing considerations in CANDU fuel bundle manufacture. In Proceedings of the Eleventh Conference on CANDU Fuel, Niagara Falls, ON (pp. 1-12).
Clark, R. E. H.; Reiter, D. (2005). Nuclear fusion research. Springer. p. 15. ISBN 978-3-540-23038-0. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-3-540-23038-0
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
Petti, D.; Smolik, G.; Simpson, M.; Sharpe, J.; Anderl, R.; Fukada, S.; Hatano, Y.; Hara, M.; et al. (2006). "JUPITER-II molten salt Flibe research: An update on tritium, mobilization and redox chemistry experiments". Fusion Engineering and Design. 81 (8–14): 1439. Bibcode:2006FusED..81.1439P. doi:10.1016/j.fusengdes.2005.08.101. OSTI 911741. Archived from the original on 26 April 2021. Retrieved 30 October 2021. https://digital.library.unt.edu/ark:/67531/metadc885108/
"Scan Speak offers Be tweeters to OEMs and Do-It-Yourselfers" (PDF). Scan Speak. May 2010. Archived from the original (PDF) on 3 March 2016. https://web.archive.org/web/20160303192100/http://www.scan-speak.dk/news/20100429a.pdf
Johnson, John E. Jr. (12 November 2007). "Usher Be-718 Bookshelf Speakers with Beryllium Tweeters". Archived from the original on 13 June 2011. Retrieved 18 September 2008. https://web.archive.org/web/20110613202401/http://www.hometheaterhifi.com/speakers/232-usher-be-718-bookshelf-speakers-with-beryllium-tweeters.html
"Exposé E8B studio monitor". KRK Systems. Archived from the original on 10 April 2011. Retrieved 12 February 2009. http://www.krksys.com/krk-studio-monitor-speakers/expose.html
"Beryllium use in pro audio Focal speakers". Archived from the original on 31 December 2012. https://web.archive.org/web/20121231000340/http://www.focalprofessional.com/en/technologies/index.php#tabs-2
"VUE Audio announces use of Be in Pro Audio loudspeakers". VUE Audiotechnik. Archived from the original on 10 May 2012. Retrieved 21 May 2012. https://web.archive.org/web/20120510155255/http://www.vueaudio.com/press/
Svilar, Mark (8 January 2004). "Analysis of "Beryllium" Speaker Dome and Cone Obtained from China". Archived from the original on 17 May 2013. Retrieved 13 February 2009. https://web.archive.org/web/20130517084140/http://www.docstoc.com/docs/45957370/BRUSH-WELLMAN
"Shure V15 VXmR User Guide" (PDF). Archived from the original (PDF) on 10 January 2017. Retrieved 31 May 2017. https://web.archive.org/web/20170110184904/http://cdn.shure.com/user_guide/upload/2221/v15vxmr-user-guide-english.pdf
Diehl, Roland (2000). High-power diode lasers. Springer. p. 104. ISBN 978-3-540-66693-6. Archived from the original on 27 July 2020. Retrieved 30 October 2021. 978-3-540-66693-6
Behrens, V. (2003). "11 Beryllium". In Beiss, P. (ed.). Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A1. Berlin: Springer. pp. 667–677. doi:10.1007/10689123_36. ISBN 978-3-540-42942-5. 978-3-540-42942-5
"Purdue engineers create safer, more efficient nuclear fuel, model its performance". Purdue University. 27 September 2005. Archived from the original on 27 May 2012. Retrieved 18 September 2008. http://www.purdue.edu/uns/html4ever/2005/050927.Solomon.nuclear.html
Breslin AJ (1966). "Ch. 3. Exposures and Patterns of Disease in the Beryllium Industry". In Stokinger, HE (ed.). Beryllium: Its Industrial Hygiene Aspects. Academic Press, New York. pp. 30–33. ISBN 978-0-12-671850-8. 978-0-12-671850-8
OSHA Hazard Information Bulletin HIB 02-04-19 (rev. 05-14-02) Preventing Adverse Health Effects From Exposure to Beryllium in Dental Laboratories https://web.archive.org/web/20161012071826/https://www.osha.gov/dts/hib/hib_data/hib20020419.html
Elshahawy, W.; Watanabe, I. (2014). "Biocompatibility of dental alloys used in dental fixed prosthodontics". Tanta Dental Journal. 11 (2): 150–159. doi:10.1016/j.tdj.2014.07.005. https://doi.org/10.1016%2Fj.tdj.2014.07.005
"Beryllium Windows". European Synchrotron Radiation Facility. Retrieved 15 September 2024. https://www.esrf.fr/home/UsersAndScience/Experiments/StructMaterials/BM05/BeamlineGuide/OpticsHutch/Be_windows.html#:~:text=The%20purpose%20of%20the%20beryllium,small%20way%20by%20passing%20through.
Zheng, Li; Wang, Xiao (2020). "Progress in the Application of Rare Light Metal Beryllium". Materials Science Forum. 977: 261–271. doi:10.4028/www.scientific.net/MSF.977.261. /wiki/Doi_(identifier)
"Beryllium Foil". Refractory Metals. Retrieved 15 September 2024. https://www.refractorymetal.org/beryllium-foil/
Minnath, Mehar (2018). "7 - Metals and alloys for biomedical applications". In Balakrishnan, Preetha (ed.). Fundamental Biomaterials: Metals (1st ed.). Woodhead Publishing. pp. 167–174. doi:10.1016/B978-0-08-102205-4.00007-6. ISBN 978-0081022054. 978-0081022054
Maksimov, O. (2005). "Berryllium chalogenide alloys for visible light emitting and laser diode" (PDF). Rev.Adv.Mater.Sc. 9: 178–183. Retrieved 15 September 2024. https://www.ipme.ru/e-journals/RAMS/no_2905/maksimov.pdf
Emsley 2001, p. 57. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Emsley 2001, p. 57. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
Venugopal, B. (14 March 2013). Physiologic and Chemical Basis for Metal Toxicity. Springer. pp. 167–8. ISBN 978-1-4684-2952-7. 978-1-4684-2952-7
Emsley 2001, p. 57. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
"Beryllium and Beryllium Compounds". IARC Monograph. Vol. 58. International Agency for Research on Cancer. 1993. Archived from the original on 26 May 2024. Retrieved 18 September 2008. http://www.inchem.org/documents/iarc/vol58/mono58-1.html
NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/npg/npgd0054.html
"CDC - NIOSH Pocket Guide to Chemical Hazards - Arsenic (inorganic compounds, as As)". Archived from the original on 11 May 2017. Retrieved 30 October 2021. https://www.cdc.gov/niosh/npg/npgd0038.html
NIOSH Pocket Guide to Chemical Hazards - Mercury compounds. The National Institute for Occupational Safety and Health (NIOSH). Archived 7 May 2021 at the Wayback Machine https://www.cdc.gov/niosh/npg/npgd0383.html
"CDC – Beryllium Research- NIOSH Workplace Safety and Health Topic". www.cdc.gov. Archived from the original on 8 March 2013. Retrieved 30 January 2017. https://www.cdc.gov/niosh/topics/beryllium/be-sensitization-drds.html
"CDC – Beryllium Research- NIOSH Workplace Safety and Health Topic". www.cdc.gov. Archived from the original on 8 March 2013. Retrieved 30 January 2017. https://www.cdc.gov/niosh/topics/beryllium/be-sensitization-drds.html
Emsley 2001, p. 5. - Emsley, John (2001). Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl
"Photograph of Chicago Pile One Scientists 1946". Office of Public Affairs, Argonne National Laboratory. 19 June 2006. Archived from the original on 11 December 2008. Retrieved 18 September 2008. http://www.atomicarchive.com/Photos/CP1/image5.shtml
Newport News Shipbuilding Workers Face a Hidden Toxin, Daily Press (Virginia), Michael Welles Shapiro, 31 August 2013 https://www.dailypress.com/2013/08/31/newport-news-shipbuilding-workers-face-a-hidden-toxin/
International Programme on Chemical Safety (1990). "Beryllium: ENVIRONMENTAL HEALTH CRITERIA 106". World Health Organization. Archived from the original on 9 June 2011. Retrieved 10 April 2011. http://www.inchem.org/documents/ehc/ehc/ehc106.htm
"ASTM D7458 –08". American Society for Testing and Materials. Archived from the original on 12 July 2010. Retrieved 8 August 2009. http://www.astm.org/Standards/D7458.htm
Minogue, E. M.; Ehler, D. S.; Burrell, A. K.; McCleskey, T. M.; Taylor, T. P. (2005). "Development of a New Fluorescence Method for the Detection of Beryllium on Surfaces". Journal of ASTM International. 2 (9): 13168. doi:10.1520/JAI13168. /wiki/Doi_(identifier)
"CDC – NIOSH Publications and Products – NIOSH Manual of Analytical Methods (2003–154) – Alpha List B". www.cdc.gov. Archived from the original on 16 December 2016. Retrieved 30 January 2017. https://www.cdc.gov/niosh/nmam/method-b.html