The value-level approach to programming invites the study of the space of values under the value-forming operations, and of the algebraic properties of those operations. This is what is called the study of data types, and it has advanced from focusing on the values themselves and their structure, to a primary concern with the value-forming operations and their structure, as given by certain axioms and algebraic laws, that is, to the algebraic study of data types.
Lambda calculus-based languages (such as Lisp, ISWIM, and Scheme) are in actual practice value-level languages, although they are not thus restricted by design.
To see why typical lambda style programs are primarily value-level, consider the usual definition of a value-to-value function, say
here, x must be a value variable (since the argument of f is a value by definition) and E must denote a value too (since f's result is a value by definition). Typically, E is an expression involving the application of value-forming functions to value variables and constants; nevertheless, a few value-forming functions having both function and value arguments do exist and are used for limited purposes.
If the term values is defined to include the value variables themselves, then the value-level view of programming is one of building values by the application of existing programs (value-forming operations/functions) to other values. Lambda-style programming builds a new program from the result-value by lambda-abstracting the value variables.