The conformal group of the ( p + q ) {\displaystyle (p+q)} -dimensional space R p , q {\displaystyle \mathbb {R} ^{p,q}} is S O ( p + 1 , q + 1 ) {\displaystyle SO(p+1,q+1)} and its Lie algebra is s o ( p + 1 , q + 1 ) {\displaystyle {\mathfrak {so}}(p+1,q+1)} . The superconformal algebra is a Lie superalgebra containing the bosonic factor s o ( p + 1 , q + 1 ) {\displaystyle {\mathfrak {so}}(p+1,q+1)} and whose odd generators transform in spinor representations of s o ( p + 1 , q + 1 ) {\displaystyle {\mathfrak {so}}(p+1,q+1)} . Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of p {\displaystyle p} and q {\displaystyle q} . A (possibly incomplete) list is
According to 12 the superconformal algebra with N {\displaystyle {\mathcal {N}}} supersymmetries in 3+1 dimensions is given by the bosonic generators P μ {\displaystyle P_{\mu }} , D {\displaystyle D} , M μ ν {\displaystyle M_{\mu \nu }} , K μ {\displaystyle K_{\mu }} , the U(1) R-symmetry A {\displaystyle A} , the SU(N) R-symmetry T j i {\displaystyle T_{j}^{i}} and the fermionic generators Q α i {\displaystyle Q^{\alpha i}} , Q ¯ i α ˙ {\displaystyle {\overline {Q}}_{i}^{\dot {\alpha }}} , S i α {\displaystyle S_{i}^{\alpha }} and S ¯ α ˙ i {\displaystyle {\overline {S}}^{{\dot {\alpha }}i}} . Here, μ , ν , ρ , … {\displaystyle \mu ,\nu ,\rho ,\dots } denote spacetime indices; α , β , … {\displaystyle \alpha ,\beta ,\dots } left-handed Weyl spinor indices; α ˙ , β ˙ , … {\displaystyle {\dot {\alpha }},{\dot {\beta }},\dots } right-handed Weyl spinor indices; and i , j , … {\displaystyle i,j,\dots } the internal R-symmetry indices.
The Lie superbrackets of the bosonic conformal algebra are given by
where η is the Minkowski metric; while the ones for the fermionic generators are:
The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:
But the fermionic generators do carry R-charge:
Under bosonic conformal transformations, the fermionic generators transform as:
Main article: super Virasoro algebra
There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.
West, P. C. (2002). "Introduction to Rigid Supersymmetric Theories". Confinement, Duality, and Non-Perturbative Aspects of QCD. NATO Science Series: B. Vol. 368. pp. 453–476. arXiv:hep-th/9805055. doi:10.1007/0-306-47056-X_17. ISBN 0-306-45826-8. S2CID 119413468. 0-306-45826-8 ↩
Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics. 58: 1–548. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G. /wiki/Martin_Rocek ↩