For the base category, let C be the category of schemes of finite type over a fixed field k. Then Vect n {\displaystyle \operatorname {Vect} _{n}} is the category where
Let p : Vect n → C {\displaystyle p:\operatorname {Vect} _{n}\to C} be the forgetful functor. Via p, Vect n {\displaystyle \operatorname {Vect} _{n}} is a prestack over C. That it is a stack over C is precisely the statement "vector bundles have the descent property". Note that each fiber Vect n ( U ) = p − 1 ( U ) {\displaystyle \operatorname {Vect} _{n}(U)=p^{-1}(U)} over U is the category of rank-n vector bundles over U where every morphism is an isomorphism (i.e., each fiber of p is a groupoid).
Behrend 2002, Example 20.2. - Behrend, Kai (2002). "Localization and Gromov-Witten Invariants". In de Bartolomeis; Dubrovin; Reina (eds.). Quantum Cohomology. Lecture Notes in Mathematics. Vol. 1776. Berlin: Springer. pp. 3–38. doi:10.1007/978-3-540-45617-9_2. ISBN 978-3-540-43121-3. https://doi.org/10.1007%2F978-3-540-45617-9_2 ↩