Probabilistic metric spaces are initially introduced by Menger, which were termed statistical metrics.3 Shortly after, Wald criticized the generalized triangle inequality and proposed an alternative one.4 However, both authors had come to the conclusion that in some respects the Wald inequality was too stringent a requirement to impose on all probability metric spaces, which is partly included in the work of Schweizer and Sklar.5 Later, the probabilistic metric spaces found to be very suitable to be used with fuzzy sets6 and further called fuzzy metric spaces7
A probability metric D between two random variables X and Y may be defined, for example, as D ( X , Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ | x − y | F ( x , y ) d x d y {\displaystyle D(X,Y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|x-y|F(x,y)\,dx\,dy} where F(x, y) denotes the joint probability density function of the random variables X and Y. If X and Y are independent from each other, then the equation above transforms into D ( X , Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ | x − y | f ( x ) g ( y ) d x d y {\displaystyle D(X,Y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|x-y|f(x)g(y)\,dx\,dy} where f(x) and g(y) are probability density functions of X and Y respectively.
One may easily show that such probability metrics do not satisfy the first metric axiom or satisfies it if, and only if, both of arguments X and Y are certain events described by Dirac delta density probability distribution functions. In this case: D ( X , Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ | x − y | δ ( x − μ x ) δ ( y − μ y ) d x d y = | μ x − μ y | {\displaystyle D(X,Y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|x-y|\delta (x-\mu _{x})\delta (y-\mu _{y})\,dx\,dy=|\mu _{x}-\mu _{y}|} the probability metric simply transforms into the metric between expected values μ x {\displaystyle \mu _{x}} , μ y {\displaystyle \mu _{y}} of the variables X and Y.
For all other random variables X, Y the probability metric does not satisfy the identity of indiscernibles condition required to be satisfied by the metric of the metric space, that is: D ( X , X ) > 0. {\displaystyle D\left(X,X\right)>0.}
For example if both probability distribution functions of random variables X and Y are normal distributions (N) having the same standard deviation σ {\displaystyle \sigma } , integrating D ( X , Y ) {\displaystyle D\left(X,Y\right)} yields: D N N ( X , Y ) = μ x y + 2 σ π exp ( − μ x y 2 4 σ 2 ) − μ x y erfc ( μ x y 2 σ ) {\displaystyle D_{NN}(X,Y)=\mu _{xy}+{\frac {2\sigma }{\sqrt {\pi }}}\exp \left(-{\frac {\mu _{xy}^{2}}{4\sigma ^{2}}}\right)-\mu _{xy}\operatorname {erfc} \left({\frac {\mu _{xy}}{2\sigma }}\right)} where μ x y = | μ x − μ y | , {\displaystyle \mu _{xy}=\left|\mu _{x}-\mu _{y}\right|,} and erfc ( x ) {\displaystyle \operatorname {erfc} (x)} is the complementary error function.
In this case: lim μ x y → 0 D N N ( X , Y ) = D N N ( X , X ) = 2 σ π . {\displaystyle \lim _{\mu _{xy}\to 0}D_{NN}(X,Y)=D_{NN}(X,X)={\frac {2\sigma }{\sqrt {\pi }}}.}
The probability metric of random variables may be extended into metric D(X, Y) of random vectors X, Y by substituting | x − y | {\displaystyle |x-y|} with any metric operator d(x, y): D ( X , Y ) = ∫ Ω ∫ Ω d ( x , y ) F ( x , y ) d Ω x d Ω y {\displaystyle D(\mathbf {X} ,\mathbf {Y} )=\int _{\Omega }\int _{\Omega }d(\mathbf {x} ,\mathbf {y} )F(\mathbf {x} ,\mathbf {y} )\,d\Omega _{x}d\Omega _{y}} where F(X, Y) is the joint probability density function of random vectors X and Y. For example substituting d(x, y) with Euclidean metric and providing the vectors X and Y are mutually independent would yield to: D ( X , Y ) = ∫ Ω ∫ Ω ∑ i | x i − y i | 2 F ( x ) G ( y ) d Ω x d Ω y . {\displaystyle D(\mathbf {X} ,\mathbf {Y} )=\int _{\Omega }\int _{\Omega }{\sqrt {\sum _{i}|x_{i}-y_{i}|^{2}}}F(\mathbf {x} )G(\mathbf {y} )\,d\Omega _{x}d\Omega _{y}.}
Sherwood, H. (1971). "Complete probabilistic metric spaces". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 20 (2): 117–128. doi:10.1007/bf00536289. ISSN 0044-3719. https://doi.org/10.1007%2Fbf00536289 ↩
Schweizer, Berthold; Sklar, Abe (1983). Probabilistic metric spaces. North-Holland series in probability and applied mathematics. New York: North-Holland. ISBN 978-0-444-00666-0. 978-0-444-00666-0 ↩
Menger, K. (2003), "Statistical Metrics", Selecta Mathematica, Springer Vienna, pp. 433–435, doi:10.1007/978-3-7091-6045-9_35, ISBN 978-3-7091-7294-0 978-3-7091-7294-0 ↩
Wald, A. (1943), "On a Statistical Generalization of Metric Spaces", Proceedings of the National Academy of Sciences, 29 (6): 196–197, Bibcode:1943PNAS...29..196W, doi:10.1073/pnas.29.6.196, PMC 1078584, PMID 16578072 /wiki/Bibcode_(identifier) ↩
Schweizer, B. and Sklar, A (2003), "Statistical Metrics", Selecta Mathematica, Springer Vienna, pp. 433–435, doi:10.1007/978-3-7091-6045-9_35, ISBN 978-3-7091-7294-0 978-3-7091-7294-0 ↩
Bede, B. (2013). Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing. Vol. 295. Springer Berlin Heidelberg. doi:10.1007/978-3-642-35221-8. ISBN 978-3-642-35220-1. 978-3-642-35220-1 ↩
Kramosil, Ivan; Michálek, Jiří (1975). "Fuzzy metrics and statistical metric spaces" (PDF). Kybernetika. 11 (5): 336–344. https://www.kybernetika.cz/content/1975/5/336/paper.pdf ↩