Main article: Elliptic boundary value problem
Let U {\displaystyle U} be an open, bounded subset of R n {\displaystyle \mathbb {R} ^{n}} , denote its boundary as ∂ U {\displaystyle \partial U} and the variables as x = ( x 1 , . . . , x n ) {\displaystyle x=(x_{1},...,x_{n})} . Representing the PDE as a partial differential operator L {\displaystyle L} acting on an unknown function u = u ( x ) {\displaystyle u=u(x)} of x ∈ U {\displaystyle x\in U} results in a BVP of the form { L u = f in U u = 0 on ∂ U , {\displaystyle \left\{{\begin{aligned}Lu&=f&&{\text{in }}U\\u&=0&&{\text{on }}\partial U,\end{aligned}}\right.} where f : U → R {\displaystyle f:U\rightarrow \mathbb {R} } is a given function f = f ( x ) {\displaystyle f=f(x)} and u : U ∪ ∂ U → R {\displaystyle u:U\cup \partial U\rightarrow \mathbb {R} } and the elliptic operator L {\displaystyle L} is of the divergence form: L u ( x ) = − ∑ i , j = 1 n ( a i j ( x ) u x i ) x j + ∑ i = 1 n b i ( x ) u x i ( x ) + c ( x ) u ( x ) , {\displaystyle Lu(x)=-\sum _{i,j=1}^{n}(a_{ij}(x)u_{x_{i}})_{x_{j}}+\sum _{i=1}^{n}b_{i}(x)u_{x_{i}}(x)+c(x)u(x),} then
Parabolic and hyperbolic PDEs describe the time evolution of a quantity u governed by an elliptic operator L and an external force f over a space U ⊂ R n {\displaystyle U\subset \mathbb {R} ^{n}} . We assume the boundary of U to be smooth, and the elliptic operator to be independent of time, with smooth coefficients, i.e. L u ( t , x ) = − ∑ i , j = 1 n ( a i j ( x ) u x i ( t , x ) ) x j + ∑ i = 1 n b i ( x ) u x i ( t , x ) + c ( x ) u ( t , x ) . {\displaystyle Lu(t,x)=-\sum _{i,j=1}^{n}{\big (}a_{ij}(x)u_{x_{i}}(t,x){\big )}_{x_{j}}+\sum _{i=1}^{n}b_{i}(x)u_{x_{i}}(t,x)+c(x)u(t,x).} In addition, we subscribe the boundary value of u to be 0.
Then the regularity of the solution is given by the following table,
where m is a natural number, x ∈ U {\displaystyle x\in U} denotes the space variable, t denotes the time variable, Hs is a Sobolev space of functions with square-integrable weak derivatives, and LtpX is the Bochner space of integrable X-valued functions.
Not every weak solution is smooth; for example, there may be discontinuities in the weak solutions of conservation laws called shock waves.3
Fernández-Real, Xavier; Ros-Oton, Xavier (2022-12-06). Regularity Theory for Elliptic PDE. arXiv:2301.01564. doi:10.4171/ZLAM/28. ISBN 978-3-98547-028-0. S2CID 254389061. 978-3-98547-028-0 ↩
Evans, Lawrence C. (1998). Partial differential equations (PDF). Providence (R. I.): American mathematical society. ISBN 0-8218-0772-2. 0-8218-0772-2 ↩
Smoller, Joel. Shock Waves and Reaction—Diffusion Equations (2 ed.). Springer New York, NY. doi:10.1007/978-1-4612-0873-0. ISBN 978-0-387-94259-9. 978-0-387-94259-9 ↩