The generating function for PL(n) is1
It is sometimes referred to as the MacMahon function, as it was discovered by Percy A. MacMahon.
This formula may be viewed as the 2-dimensional analogue of Euler's product formula for the number of integer partitions of n. There is no analogous formula known for partitions in higher dimensions (i.e., for solid partitions).2 The asymptotics for plane partitions were first calculated by E. M. Wright.3 One obtains, for large n {\displaystyle n} , that4
Evaluating numerically yields
Around 1896, MacMahon set up the generating function of plane partitions that are subsets of the r × s × t {\displaystyle r\times s\times t} box B ( r , s , t ) = { ( i , j , k ) | 1 ≤ i ≤ r , 1 ≤ j ≤ s , 1 ≤ k ≤ t } {\displaystyle {\mathcal {B}}(r,s,t)=\{(i,j,k)|1\leq i\leq r,1\leq j\leq s,1\leq k\leq t\}} in his first paper on plane partitions.5 The formula is given by ∑ π ∈ B ( r , s , t ) q | π | = ∏ i = 1 r ∏ j = 1 s 1 − q i + j + t − 1 1 − q i + j − 1 {\displaystyle \sum _{\pi \in {\mathcal {B}}(r,s,t)}q^{|\pi |}=\prod _{i=1}^{r}\prod _{j=1}^{s}{\frac {1-q^{i+j+t-1}}{1-q^{i+j-1}}}}
A proof of this formula can be found in the book Combinatory Analysis written by MacMahon.6 MacMahon also mentions the generating functions of plane partitions.7 The formula for the generating function can be written in an alternative way, which is given by ∑ π ∈ B ( r , s , t ) q | π | = ∏ i = 1 r ∏ j = 1 s ∏ k = 1 t 1 − q i + j + k − 1 1 − q i + j + k − 2 {\displaystyle \sum _{\pi \in {\mathcal {B}}(r,s,t)}q^{|\pi |}=\prod _{i=1}^{r}\prod _{j=1}^{s}\prod _{k=1}^{t}{\frac {1-q^{i+j+k-1}}{1-q^{i+j+k-2}}}}
Multiplying each component by 1 − q 1 − q {\displaystyle \textstyle {\frac {1-q}{1-q}}} , and setting q = 1 in the formulas above yields that the total number N 1 ( r , s , t ) {\displaystyle N_{1}(r,s,t)} of plane partitions that fit in the r × s × t {\displaystyle r\times s\times t} box B ( r , s , t ) {\displaystyle {\mathcal {B}}(r,s,t)} is equal to the following product formula:8 N 1 ( r , s , t ) = ∏ ( i , j , k ) ∈ B ( r , s , t ) i + j + k − 1 i + j + k − 2 = ∏ i = 1 r ∏ j = 1 s i + j + t − 1 i + j − 1 . {\displaystyle N_{1}(r,s,t)=\prod _{(i,j,k)\in {\mathcal {B}}(r,s,t)}{\frac {i+j+k-1}{i+j+k-2}}=\prod _{i=1}^{r}\prod _{j=1}^{s}{\frac {i+j+t-1}{i+j-1}}.} The planar case (when t = 1) yields the binomial coefficients:
The general solution is
The isometric projection of the unit cubes representing a plane partition in a box gives a bijection between these plane partitions and rhombus tilings of a hexagon with the same edge lengths as the box.9
Special plane partitions include symmetric, cyclic and self-complementary plane partitions, and combinations of these properties.
In the subsequent sections, the enumeration of special sub-classes of plane partitions inside a box are considered. These articles use the notation N i ( r , s , t ) {\displaystyle N_{i}(r,s,t)} for the number of such plane partitions, where r, s, and t are the dimensions of the box under consideration, and i is the index for the case being considered.
S 2 {\displaystyle {\mathcal {S}}_{2}} is the group of permutations acting on the first two coordinates of a point. This group contains the identity, which sends (i, j, k) to itself, and the transposition (i, j, k) → (j, i, k). The number of elements in an orbit η {\displaystyle \eta } is denoted by | η | {\displaystyle |\eta |} . B / S 2 {\displaystyle {\mathcal {B}}/{\mathcal {S}}_{2}} denotes the set of orbits of elements of B {\displaystyle {\mathcal {B}}} under the action of S 2 {\displaystyle {\mathcal {S}}_{2}} . The height of an element (i, j, k) is defined by h t ( i , j , k ) = i + j + k − 2. {\displaystyle ht(i,j,k)=i+j+k-2.} The height increases by one for each step away from the back right corner. For example, the corner position (1, 1, 1) has height 1 and ht(2, 1, 1) = 2. The height of an orbit is defined to be the height of any element in the orbit. This notation of the height differs from the notation of Ian G. Macdonald.10
There is a natural action of the permutation group S 3 {\displaystyle {\mathcal {S}}_{3}} on a Ferrers diagram of a plane partition—this corresponds to simultaneously permuting the three coordinates of all nodes. This generalizes the conjugation operation for integer partitions. The action of S 3 {\displaystyle {\mathcal {S}}_{3}} can generate new plane partitions starting from a given plane partition. Below there are shown six plane partitions of 4 that are generated by the S 3 {\displaystyle {\mathcal {S}}_{3}} action. Only the exchange of the first two coordinates is manifest in the representation given below.
C 3 {\displaystyle {\mathcal {C}}_{3}} is called the group of cyclic permutations and consists of
A plane partition π {\displaystyle \pi } is called symmetric if πi,j = πj,i for all i, j. In other words, a plane partition is symmetric if ( i , j , k ) ∈ B ( r , s , t ) {\displaystyle (i,j,k)\in {\mathcal {B}}(r,s,t)} if and only if ( j , i , k ) ∈ B ( r , s , t ) {\displaystyle (j,i,k)\in {\mathcal {B}}(r,s,t)} . Plane partitions of this type are symmetric with respect to the plane x = y. Below is an example of a symmetric plane partition and its visualisation.
In 1898, MacMahon formulated his conjecture about the generating function for symmetric plane partitions which are subsets of B ( r , r , t ) {\displaystyle {\mathcal {B}}(r,r,t)} .11 This conjecture is called The MacMahon conjecture. The generating function is given by ∑ π ∈ B ( r , r , t ) / S 2 q | π | = ∏ i = 1 r [ 1 − q t + 2 i − 1 1 − q 2 i − 1 ∏ j = i + 1 r 1 − q 2 ( i + j + t − 1 ) 1 − q 2 ( i + j − 1 ) ] {\displaystyle \sum _{\pi \in {\mathcal {B}}(r,r,t)/{\mathcal {S}}_{2}}q^{|\pi |}=\prod _{i=1}^{r}\left[{\frac {1-q^{t+2i-1}}{1-q^{2i-1}}}\prod _{j=i+1}^{r}{\frac {1-q^{2(i+j+t-1)}}{1-q^{2(i+j-1)}}}\right]}
Macdonald12 pointed out that Percy A. MacMahon's conjecture reduces to
In 1972 Edward A. Bender and Donald E. Knuth conjectured13 a simple closed form for the generating function for plane partition which have at most r rows and strict decrease along the rows. George Andrews showed14 that the conjecture of Bender and Knuth and the MacMahon conjecture are equivalent. MacMahon's conjecture was proven almost simultaneously by George Andrews in 197715 and later Ian G. Macdonald presented an alternative proof.16 When setting q = 1 yields the counting function N 2 ( r , r , t ) {\displaystyle N_{2}(r,r,t)} which is given by
For a proof of the case q = 1 please refer to George Andrews' paper MacMahon's conjecture on symmetric plane partitions.17
π is called cyclically symmetric, if the i-th row of π {\displaystyle \pi } is conjugate to the i-th column for all i. The i-th row is regarded as an ordinary partition. The conjugate of a partition π {\displaystyle \pi } is the partition whose diagram is the transpose of partition π {\displaystyle \pi } .18 In other words, the plane partition is cyclically symmetric if whenever ( i , j , k ) ∈ B ( r , s , t ) {\displaystyle (i,j,k)\in {\mathcal {B}}(r,s,t)} then (k, i, j) and (j, k, i) also belong to B ( r , s , t ) {\displaystyle {\mathcal {B}}(r,s,t)} . Below an example of a cyclically symmetric plane partition and its visualization is given.
Macdonald's conjecture provides a formula for calculating the number of cyclically symmetric plane partitions for a given integer r. This conjecture is called The Macdonald conjecture. The generating function for cyclically symmetric plane partitions which are subsets of B ( r , r , r ) {\displaystyle {\mathcal {B}}(r,r,r)} is given by
This equation can also be written in another way
In 1979, Andrews proved Macdonald's conjecture for the case q = 1 as the "weak" Macdonald conjecture.19 Three years later William H. Mills, David Robbins and Howard Rumsey proved the general case of Macdonald's conjecture in their paper Proof of the Macdonald conjecture.20 The formula for N 3 ( r , r , r ) {\displaystyle N_{3}(r,r,r)} is given by the "weak" Macdonald conjecture
A totally symmetric plane partition π {\displaystyle \pi } is a plane partition which is symmetric and cyclically symmetric. This means that the diagram is symmetric at all three diagonal planes, or in other words that if ( i , j , k ) ∈ B ( r , s , t ) {\displaystyle (i,j,k)\in {\mathcal {B}}(r,s,t)} then all six permutations of (i, j, k) are also in B ( r , s , t ) {\displaystyle {\mathcal {B}}(r,s,t)} . Below an example of a matrix for a totally symmetric plane partition is given. The picture shows the visualisation of the matrix.
Macdonald found the total number of totally symmetric plane partitions that are subsets of B ( r , r , r ) {\displaystyle {\mathcal {B}}(r,r,r)} . The formula is given by
In 1995 John R. Stembridge first proved the formula for N 4 ( r , r , r ) {\displaystyle N_{4}(r,r,r)} 21 and later in 2005 it was proven by George Andrews, Peter Paule, and Carsten Schneider.22 Around 1983 Andrews and Robbins independently stated an explicit product formula for the orbit-counting generating function for totally symmetric plane partitions.2324 This formula already alluded to in George E. Andrews' paper Totally symmetric plane partitions which was published 1980.25 The conjecture is called The q-TSPP conjecture and it is given by:
Let S 3 {\displaystyle {\mathcal {S}}_{3}} be the symmetric group. The orbit counting function for totally symmetric plane partitions that fit inside B ( r , r , r ) {\displaystyle {\mathcal {B}}(r,r,r)} is given by the formula
This conjecture was proved in 2011 by Christoph Koutschan, Manuel Kauers and Doron Zeilberger.26
If π i , j + π r − i + 1 , s − j + 1 = t {\displaystyle \pi _{i,j}+\pi _{r-i+1,s-j+1}=t} for all 1 ≤ i ≤ r {\displaystyle 1\leq i\leq r} , 1 ≤ j ≤ s {\displaystyle 1\leq j\leq s} , then the plane partition is called self-complementary. It is necessary that the product r ⋅ s ⋅ t {\displaystyle r\cdot s\cdot t} is even. Below an example of a self-complementary symmetric plane partition and its visualisation is given.
Richard P. Stanley27 conjectured formulas for the total number of self-complementary plane partitions N 5 ( r , s , t ) {\displaystyle N_{5}(r,s,t)} . According to Stanley, Robbins also formulated formulas for the total number of self-complementary plane partitions in a different but equivalent form. The total number of self-complementary plane partitions that are subsets of B ( r , s , t ) {\displaystyle {\mathcal {B}}(r,s,t)} is given by
It is necessary that the product of r,s and t is even. A proof can be found in the paper Symmetries of Plane Partitions which was written by Stanley.2829 The proof works with Schur functions s s r ( x ) {\displaystyle s_{s^{r}}(x)} . Stanley's proof of the ordinary enumeration of self-complementary plane partitions yields the q-analogue by substituting x i = q i {\displaystyle x_{i}=q^{i}} for i = 1 , … , n {\displaystyle i=1,\ldots ,n} .30 This is a special case of Stanley's hook-content formula.31 The generating function for self-complementary plane partitions is given by
Substituting this formula in
supplies the desired q-analogue case.
A plane partition π {\displaystyle \pi } is called cyclically symmetric self-complementary if it is cyclically symmetric and self-complementary. The figure presents a cyclically symmetric self-complementary plane partition and the according matrix is below.
In a private communication with Stanley, Robbins conjectured that the total number of cyclically symmetric self-complementary plane partitions is given by N 6 ( 2 r , 2 r , 2 r ) {\displaystyle N_{6}(2r,2r,2r)} .3233 The total number of cyclically symmetric self-complementary plane partitions is given by
D r {\displaystyle D_{r}} is the number of r × r {\displaystyle r\times r} alternating sign matrices. A formula for D r {\displaystyle D_{r}} is given by
Greg Kuperberg proved the formula for N 6 ( r , r , r ) {\displaystyle N_{6}(r,r,r)} in 1994.34
A totally symmetric self-complementary plane partition is a plane partition that is both totally symmetric and self-complementary. For instance, the matrix below is such a plane partition; it is visualised in the accompanying picture.
The formula N 7 ( r , r , r ) {\displaystyle N_{7}(r,r,r)} was conjectured by William H. Mills, Robbins and Howard Rumsey in their work Self-Complementary Totally Symmetric Plane Partitions.35 The total number of totally symmetric self-complementary plane partitions is given by
Andrews proves this formula in 1994 in his paper Plane Partitions V: The TSSCPP Conjecture.36
Richard P. Stanley, Enumerative Combinatorics, Volume 2. Corollary 7.20.3. /wiki/Richard_P._Stanley ↩
R.P. Stanley, Enumerative Combinatorics, Volume 2. pp. 365, 401–2. /wiki/Richard_P._Stanley ↩
E. M. Wright, Asymptotic partition formulae I. Plane partitions, The Quarterly Journal of Mathematics 1 (1931) 177–189. /wiki/E._M._Wright ↩
Here the typographical error (in Wright's paper) has been corrected, pointed out by Mutafchiev and Kamenov.[4] ↩
MacMahon, Percy A. (1896). "XVI. Memoir on the theory of the partition of numbers.-Part I". Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 187: Article 52. ↩
MacMahon, Major Percy A. (1916). Combinatory Analysis Vol 2. Cambridge University Press. pp. §495. ↩
MacMahon, Major Percy A. (1916). Combinatory Analysis. Vol. 2. Cambridge University Press. pp. §429. ↩
MacMahon, Major Percy A. (1916). Combinatory Analysis. Cambridge University Press. pp. §429, §494. ↩
Kuperberg, Greg (1994). "Symmetries of plane partitions and the permanent-determinant method". Journal of Combinatorial Theory, Series A. 68: 115–151. arXiv:math/9410224. Bibcode:1994math.....10224K. doi:10.1016/0097-3165(94)90094-9. S2CID 14538036. /wiki/ArXiv_(identifier) ↩
Macdonald, Ian G. (1998). Symmetric Functions and Hall Polynomials. Clarendon Press. pp. 20f, 85f. ISBN 9780198504504. 9780198504504 ↩
MacMahon, Percy Alexander (1899). "Partitions of numbers whose graphs possess symmetry". Transactions of the Cambridge Philosophical Society. 17. ↩
Bender & Knuth (1972). "Enumeration of plane partitions". Journal of Combinatorial Theory, Series A. 13: 40–54. doi:10.1016/0097-3165(72)90007-6. /wiki/Doi_(identifier) ↩
Andrews, George E. (1977). "Plane partitions II: The equivalence of the Bender-Knuth and MacMahon conjectures". Pacific Journal of Mathematics. 72 (2): 283–291. doi:10.2140/pjm.1977.72.283. https://doi.org/10.2140%2Fpjm.1977.72.283 ↩
Andrews, George (1975). "Plane Partitions (I): The Mac Mahon Conjecture". Adv. Math. Suppl. Stud. 1. ↩
Macdonald, Ian G. (1998). Symmetric Functions and Hall Polynomials. Clarendon Press. pp. 83–86. ISBN 9780198504504. 9780198504504 ↩
Andrews, George E. (1977). "MacMahon's conjecture on symmetric plane partitions". Proceedings of the National Academy of Sciences. 74 (2): 426–429. Bibcode:1977PNAS...74..426A. doi:10.1073/pnas.74.2.426. PMC 392301. PMID 16592386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC392301 ↩
Andrews, George E. (1979). "Plane Partitions(III): The Weak Macdonald Conjecture". Inventiones Mathematicae. 53 (3): 193–225. Bibcode:1979InMat..53..193A. doi:10.1007/bf01389763. S2CID 122528418. /wiki/Bibcode_(identifier) ↩
Mills; Robbins; Rumsey (1982). "Proof of the Macdonald conjecture". Inventiones Mathematicae. 66: 73–88. Bibcode:1982InMat..66...73M. doi:10.1007/bf01404757. S2CID 120926391. /wiki/Bibcode_(identifier) ↩
Stembridge, John R. (1995). "The Enumeration of Totally Symmetric Plane Partitions". Advances in Mathematics. 111 (2): 227–243. doi:10.1006/aima.1995.1023. https://doi.org/10.1006%2Faima.1995.1023 ↩
Andrews; Paule; Schneider (2005). "Plane Partitions VI: Stembridge's TSPP theorem". Advances in Applied Mathematics. 34 (4): 709–739. doi:10.1016/j.aam.2004.07.008. https://doi.org/10.1016%2Fj.aam.2004.07.008 ↩
Bressoud, David M. (1999). Proofs and Confirmations. Cambridge University Press. pp. conj. 13. ISBN 9781316582756. 9781316582756 ↩
Stanley, Richard P. (1970). "A Baker's dozen of conjectures concerning plane partitions". Combinatoire énumérative: 285–293. ↩
Andrews, George (1980). "Totally symmetric plane partitions". Abstracts Amer. Math. Soc. 1: 415. ↩
Koutschan; Kauers; Zeilberger (2011). "A proof of George Andrews' and David Robbins' q-TSPP conjecture". PNAS. 108 (6): 2196–2199. arXiv:1002.4384. Bibcode:2011PNAS..108.2196K. doi:10.1073/pnas.1019186108. PMC 3038772. S2CID 12077490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038772 ↩
Stanley, Richard P. (1986). "Symmetries of Plane Partitions" (PDF). Journal of Combinatorial Theory, Series A. 43: 103–113. doi:10.1016/0097-3165(86)90028-2. http://www-math.mit.edu/~rstan/pubs/pubfiles/65.pdf ↩
"Erratum". Journal of Combinatorial Theory. 43: 310. 1986. ↩
Eisenkölbl, Theresia (2008). "A Schur function identity related to the (−1)-enumeration of self complementary plane partitions". Journal of Combinatorial Theory, Series A. 115 (2): 199–212. doi:10.1016/j.jcta.2007.05.004. https://doi.org/10.1016%2Fj.jcta.2007.05.004 ↩
Stanley, Richard P. (1971). "Theory and Application of Plane Partitions. Part 2". Studies in Applied Mathematics. 50 (3): 259–279. doi:10.1002/sapm1971503259. /wiki/Doi_(identifier) ↩
Mills; Robbins; Rumsey (1986). "Self-Complementary Totally Symmetric Plane Partitions". Journal of Combinatorial Theory, Series A. 42 (2): 277–292. doi:10.1016/0097-3165(86)90098-1. /wiki/Doi_(identifier) ↩
Andrews, George E. (1994). "Plane Partitions V: The TSSCPP Conjecture". Journal of Combinatorial Theory, Series A. 66: 28–39. doi:10.1016/0097-3165(94)90048-5. /wiki/Doi_(identifier) ↩