A notable feature of AOT is that several notable paradoxes in naive predication theory (namely Romane Clark's paradox undermining the earliest version of Héctor-Neri Castañeda's guise theory, Alan McMichael's paradox, and Daniel Kirchner's paradox) do not arise within it. AOT employs restricted abstraction schemata to avoid such paradoxes.
Zalta, Edward N. (2004). "The Theory of Abstract Objects". The Metaphysics Research Lab, Center for the Study of Language and Information, Stanford University. Retrieved July 18, 2020. http://mally.stanford.edu/theory.html
Zalta, Edward N. (1981). An Introduction to a Theory of Abstract Objects (Thesis). UMass Amherst. doi:10.7275/f32y-fm90. hdl:20.500.14394/12282. https://scholarworks.umass.edu/bitstreams/d2a3ed8c-6f57-43b0-a55e-ba91ae0dc839/download
Dale Jacquette, Meinongian Logic: The Semantics of Existence and Nonexistence, Walter de Gruyter, 1996, p. 17. /wiki/Dale_Jacquette
Alexius Meinong, "Über Gegenstandstheorie" ("The Theory of Objects"), in Alexius Meinong, ed. (1904). Untersuchungen zur Gegenstandstheorie und Psychologie (Investigations in Theory of Objects and Psychology), Leipzig: Barth, pp. 1–51. /wiki/Alexius_Meinong
Zalta 1983, p. xi. - Zalta, Edward N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics (PDF). Dordrecht: D. Reidel. https://mally.stanford.edu/abstract-objects.pdf
Mally, Ernst (1912). Gegenstandstheoretische Grundlagen der Logik und Logistik [Object-theoretic Foundations for Logics and Logistics] (PDF) (in German). Leipzig: Barth. §§33 and 39. https://mally.stanford.edu/mally-book/ObjectTheoreticFoundationsOfLogic2.pdf
Zalta 1983, p. xi. - Zalta, Edward N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics (PDF). Dordrecht: D. Reidel. https://mally.stanford.edu/abstract-objects.pdf
Zalta 1983, p. 33. - Zalta, Edward N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics (PDF). Dordrecht: D. Reidel. https://mally.stanford.edu/abstract-objects.pdf
Zalta 1983, p. 36. - Zalta, Edward N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics (PDF). Dordrecht: D. Reidel. https://mally.stanford.edu/abstract-objects.pdf
Zalta 1983, p. 35. - Zalta, Edward N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics (PDF). Dordrecht: D. Reidel. https://mally.stanford.edu/abstract-objects.pdf
Clark, Romane (1978). "Not Every Object of Thought Has Being: A Paradox in Naive Predication Theory". Noûs. 12 (2): 181–188. JSTOR 2214691. /wiki/Romane_Clark
Rapaport, William J. (1978). "Meinongian Theories and a Russellian Paradox". Noûs. 12 (2): 153–180. /wiki/William_J._Rapaport
* Palma, Adriano, ed. (2014). Castañeda and his guises: Essays on the work of Hector-Neri Castañeda. Philosophische Analyse / Philosophical Analysis (in Breton). Boston/Berlin: De Gruyter. pp. 67–82, esp. 72. ISBN 978-1-61451-663-7. 978-1-61451-663-7
McMichael, Alan; Zalta, Edward N. (1980). "An alternative theory of nonexistent objects". Journal of Philosophical Logic. 9 (3): 297–313, esp. p. 313 n. 15. doi:10.1007/BF00248396. ISSN 0022-3611. /wiki/Doi_(identifier)
Daniel Kirchner, "Representation and Partial Automation of the Principia Logico-Metaphysica in Isabelle/HOL", Archive of Formal Proofs, 2017. http://isa-afp.org/entries/PLM.html
Zalta 2024, p. 253: "Some non-core λ-expressions, such as those leading to the Clark/Boolos, McMichael/Boolos, and Kirchner paradoxes, will be provably empty." - Zalta, Edward N. (May 22, 2024). Principia Logico-Metaphysica (PDF). Center for the Study of Language and Information, Stanford University. https://mally.stanford.edu/principia.pdf
Zalta 1983, p. 158. - Zalta, Edward N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics (PDF). Dordrecht: D. Reidel. https://mally.stanford.edu/abstract-objects.pdf
Fitelson, Branden; Zalta, Edward N. (March 14, 2007). "Steps toward a computational metaphysics" (PDF). Journal of Philosophical Logic. 36 (2): 227–247. doi:10.1007/s10992-006-9038-7. ISSN 0022-3611. https://mally.stanford.edu/Papers/computation.pdf
Jesse Alama, Paul E. Oppenheimer, Edward N. Zalta, "Automating Leibniz's Theory of Concepts", in A. Felty and A. Middeldorp (eds.), Automated Deduction – CADE 25: Proceedings of the 25th International Conference on Automated Deduction (Lecture Notes in Artificial Intelligence: Volume 9195), Berlin: Springer, 2015, pp. 73–97. /wiki/Edward_N._Zalta