The biological existence of FasL occurs through two different forms which are membrane-bound and soluble. The membrane-bound protein exists as three identical subunits which serve as both the receptor activation mechanism and primary factor for complete apoptotic functionality. The soluble form of FasL (sFasL) results from metalloproteinase-mediated proteolytic cleavage of the membrane-bound FasL particularly through matrix metalloproteinase-7 (MMP-7). Despite its ability to attach with Fas receptors the soluble form of FasL possesses much less potency for apoptosis induction while researchers assume it functions to modify immune system activities.
The apoptosis-relevant domain known as TNF homology domain (THD) enables FasL structural features common to other members of TNF family protein ligands to promote both receptor interaction and trimer formation. The structural properties enable the ligand to fulfill its biological role and its selective killing of Fas-expressing cells.
As the principal goal of Fas ligand exists to trigger target cell apoptotic processes by binding to its receptor Fas (CD95) which is present on numerous cell types. The Fas receptor changes from its monomeric state to a trimeric form after ligand binding and attracts the FADD (Fas-associated death domain) protein. The recruitment of procaspase-8 occurs through FADD until the death-inducing signaling complex (DISC) is formed. The DISC complex triggers a succession of activated caspases that perform substrate cleavage activities resulting in apoptotic cellular break down.
FasL-mediated apoptosis plays several important biological functions in human physiology. The peripheral immune system depends on FasL to function properly because it removes lymphocytes that attack themselves. The immune response contraction phase is dependent on FasL because this molecule acts as a key factor to eliminate activated lymphocytes after pathogen elimination. FasL enables homeostatic maintenance of tissues by causing elimination of virus-infected cells and cells with transformed potential.
The apoptosis-related role of FasL has been identified while scientists have also discovered that FasL activates both NF-κB and MAPK signaling pathways that support cell survival conditions and cause cellular inflammation and proliferation. The Fas-FasL signaling system operates as apoptotic and non-apoptotic roles because of environmental elements.
Fas ligand is a principal mediator of immune privilege, an immunoregulatory process found in some tissues to shield them from immune-mediated destruction. Immune-privileged sites are the eye, brain, testis, and placenta. These tissues express FasL constitutively or upon local immune stimulation to kill invading Fas-expressing lymphocytes by apoptosis.
The function of FasL in immune privilege is not purely protective; anomalous or inordinate FasL expression by these tissues potentially can lead to pathological inflammation or tissue injury. Nevertheless, FasL remains an important aspect of immune evasion, both physiologically as well as pathologically, such as in tumors that simulate the conditions of immune privilege.
The regulatory processes for FasL expression function at both transcriptional and post-transcriptional phases. The gene expression of FasL gets controlled by cytokines that include interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-α) as well as interferon-gamma (IFN-γ). The expression of FasL in immune cells gets significantly enhanced through exposure to stress signals as well as antigen stimulation combined with T cell receptor activation.
The expression and function of Fas ligand are regulated tightly at several levels to provide for correct immune responses and avoid tissue injury.
The cleavage of membrane-bound FasL into its soluble form is facilitated by metalloproteinases, such as matrix metalloproteinase-7 (MMP-7). Cleavage diminishes the apoptotic activity of FasL and can serve to suppress immune responses or rechannel Fas signaling into non-apoptotic pathways.
In the cell, multiple regulatory proteins influence the downstream Fas signaling pathway. c-FLIP, a well-established caspase-8 recruitment inhibitor at the DISC and thus preventing apoptosis, is also present. Protein components in FasL ubiquitination and degradation help regulate its function to fine-tune it.
When it binds to its receptor, FasL triggers the classical extrinsic apoptotic pathway but also induces a number of non-apoptotic signal transduction cascades based on the cellular context and availability of intracellular regulatory proteins.
The apoptotic pathway starts with trimerization of Fas receptor and recruitment of the adaptor molecule FADD. FADD brings about the recruitment of procaspase-8, resulting in the formation of the death-inducing signaling complex (DISC). Activated caspase-8 subsequently activates downstream effector caspases, such as caspase-3, to cause apoptosis through DNA fragmentation, cell shrinkage, and membrane blebbing.
FasL-Fas interaction in certain cell types activates non-apoptotic pathways. These are:
FasL-Fas signaling axis is a central regulator of immune function, and its dysregulation has been implicated in the pathogenesis of many disease processes. Its clinical significance ranges across autoimmune diseases, cancer immunology, and transplant medicine.
Abnormal Fas-FasL signaling has been linked with survival of autoreactive T cells and B cells, leading to disruption of peripheral immune tolerance. One of the best-studied disorders in this regard is autoimmune lymphoproliferative syndrome (ALPS), a genetic disorder due to mutations in Fas or FasL that leads to lymphocytosis and the emergence of autoimmune disease. Likewise, reduced FasL function has been associated with systemic lupus erythematosus (SLE), where impaired apoptosis of self-reactive cells plays a role in disease etiology.
FasL expression by cancer cells is a strategy of immune escape. Several tumor cells express FasL on their surface to trigger apoptosis among Fas-expressing TILs, especially cytotoxic CD8+ T cells. This is called the "Fas counterattack," by which tumors are enabled to evade immune surveillance and proceed with their proliferation. Additionally, the tumor environment can secrete soluble FasL, again contributing to local immunosuppression.
In transplantation environments, FasL participates in both graft tolerance and rejection. Although the expression of FasL within donor tissues can facilitate apoptosis in host immune cells and maintain graft survival, overexpression of FasL can have the opposite effect of causing inflammation and damage to the graft. Experimental evidence has indicated that manipulation of FasL levels would modulate the balance between graft tolerance and rejection.
Levoin N, Jean M, Legembre P (2020). "CD95 Structure, Aggregation and Cell Signaling". Frontiers in Cell and Developmental Biology. 8: 314. doi:10.3389/fcell.2020.00314. PMC 7214685. PMID 32432115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214685
Zhao L, Fu Q, Pan L, Piai A, Chou JJ (2020-10-14). "The Diversity and Similarity of Transmembrane Trimerization of TNF Receptors". Frontiers in Cell and Developmental Biology. 8: 569684. doi:10.3389/fcell.2020.569684. PMC 7591462. PMID 33163490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591462
Alderson MR, Lynch DH (January 1998). "FAS (CD95) and FAS Ligand". In Delves PJ (ed.). Encyclopedia of Immunology (Second ed.). Oxford: Elsevier. pp. 874–880. doi:10.1006/rwei.1999.0229. ISBN 978-0-12-226765-9. Retrieved 2025-04-16. 978-0-12-226765-9
Vargo-Gogola T, Crawford HC, Fingleton B, Matrisian LM (December 2002). "Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand". Archives of Biochemistry and Biophysics. 408 (2): 155–161. doi:10.1016/S0003-9861(02)00525-8. PMID 12464266. /wiki/Doi_(identifier)
Nareznoi D, Konikov-Rozenman J, Petukhov D, Breuer R, Wallach-Dayan SB (February 2020). "Matrix Metalloproteinases Retain Soluble FasL-mediated Resistance to Cell Death in Fibrotic-Lung Myofibroblasts". Cells. 9 (2): 411. doi:10.3390/cells9020411. PMC 7072292. PMID 32053892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072292
Kucka K, Wajant H (2021-02-11). "Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily". Frontiers in Cell and Developmental Biology. 8: 615141. doi:10.3389/fcell.2020.615141. PMC 7905041. PMID 33644033. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905041
Guégan JP, Legembre P (March 2018). "Nonapoptotic functions of Fas/CD95 in the immune response". The FEBS Journal. 285 (5): 809–827. doi:10.1111/febs.14292. PMID 29032605. /wiki/Doi_(identifier)
Salvesen GS, Riedl SJ (September 2009). "Structure of the Fas/FADD complex: a conditional death domain complex mediating signaling by receptor clustering". Cell Cycle. 8 (17): 2723–2727. doi:10.4161/cc.8.17.9399. PMC 2788920. PMID 19652545. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788920
Olsson M, Vakifahmetoglu H, Abruzzo PM, Högstrand K, Grandien A, Zhivotovsky B (May 2009). "DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis". Oncogene. 28 (18): 1949–1959. doi:10.1038/onc.2009.36. PMID 19347032. /wiki/Doi_(identifier)
Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N (2017-04-05). "Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance". Frontiers in Immunology. 8: 403. doi:10.3389/fimmu.2017.00403. PMC 5380675. PMID 28424702. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380675
Bień K, Sokołowska J, Bąska P, Nowak Z, Stankiewicz W, Krzyzowska M (2015). "Fas/FasL pathway participates in regulation of antiviral and inflammatory response during mousepox infection of lungs". Mediators of Inflammation. 2015 (1): 281613. doi:10.1155/2015/281613. PMC 4385687. PMID 25873756. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385687
Dockrell DH (August 2003). "The multiple roles of Fas ligand in the pathogenesis of infectious diseases". Clinical Microbiology and Infection. 9 (8): 766–779. doi:10.1046/j.1469-0691.2003.00669.x. PMID 14616696. https://doi.org/10.1046%2Fj.1469-0691.2003.00669.x
Hsu SC, Gavrilin MA, Lee HH, Wu CC, Han SH, Lai MZ (September 1999). "NF-kappa B-dependent Fas ligand expression". European Journal of Immunology. 29 (9): 2948–2956. doi:10.1002/(SICI)1521-4141(199909)29:09<2948::AID-IMMU2948>3.0.CO;2-0. PMID 10508269. /wiki/Doi_(identifier)
Wajant H, Pfizenmaier K, Scheurich P (February 2003). "Non-apoptotic Fas signaling". Cytokine & Growth Factor Reviews. 14 (1): 53–66. doi:10.1016/S1359-6101(02)00072-2. PMID 12485619. /wiki/Doi_(identifier)
Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (November 1995). "Fas ligand-induced apoptosis as a mechanism of immune privilege". Science. 270 (5239): 1189–1192. Bibcode:1995Sci...270.1189G. doi:10.1126/science.270.5239.1189. PMID 7502042. http://nbn-resolving.de/urn:nbn:de:bsz:352-143183
Taylor AW (2016-02-08). "Ocular Immune Privilege and Transplantation". Frontiers in Immunology. 7: 37. doi:10.3389/fimmu.2016.00037. PMC 4744940. PMID 26904026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744940
Green DR, Ware CF (June 1997). "Fas-ligand: privilege and peril". Proceedings of the National Academy of Sciences of the United States of America. 94 (12): 5986–5990. Bibcode:1997PNAS...94.5986G. doi:10.1073/pnas.94.12.5986. PMC 33671. PMID 9177153. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33671
Takahashi T, Tanaka M, Inazawa J, Abe T, Suda T, Nagata S (October 1994). "Human Fas ligand: gene structure, chromosomal location and species specificity". International Immunology. 6 (10): 1567–1574. doi:10.1093/intimm/6.10.1567. PMID 7826947. /wiki/Doi_(identifier)
Liu W, Ramagopal U, Cheng H, Bonanno JB, Toro R, Bhosle R, et al. (November 2016). "Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3". Structure. 24 (11): 2016–2023. doi:10.1016/j.str.2016.09.009. PMID 27806260. https://doi.org/10.1016%2Fj.str.2016.09.009
Sheikh MS, Fornace AJ (August 2000). "Death and decoy receptors and p53-mediated apoptosis". Leukemia. 14 (8): 1509–1513. doi:10.1038/sj.leu.2401865. PMID 10942251. S2CID 12572810. /wiki/Doi_(identifier)
Hsieh SL, Lin WW (June 2017). "Decoy receptor 3: an endogenous immunomodulator in cancer growth and inflammatory reactions". Journal of Biomedical Science. 24 (1): 39. doi:10.1186/s12929-017-0347-7. PMC 5477258. PMID 28629361. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477258
Leite-de-Moraes MC, Herbelin A, Gouarin C, Koezuka Y, Schneider E, Dy M (October 2000). "Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes". Journal of Immunology. 165 (8): 4367–4371. doi:10.4049/jimmunol.165.8.4367. PMID 11035073. /wiki/Doi_(identifier)
Oshimi Y, Oda S, Honda Y, Nagata S, Miyazaki S (October 1996). "Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells". Journal of Immunology. 157 (7): 2909–2915. doi:10.4049/jimmunol.157.7.2909. PMID 8816396. /wiki/Doi_(identifier)
Guller S, LaChapelle L (March 1999). "The role of placental Fas ligand in maintaining immune privilege at maternal-fetal interfaces". Seminars in Reproductive Endocrinology. 17 (1): 39–44. doi:10.1055/s-2007-1016210. PMID 10406074. /wiki/Doi_(identifier)
Arakaki R, Yamada A, Kudo Y, Hayashi Y, Ishimaru N (2014). "Mechanism of activation-induced cell death of T cells and regulation of FasL expression". Critical Reviews in Immunology. 34 (4): 301–314. doi:10.1615/CritRevImmunol.2014009988. PMID 24941158. /wiki/Doi_(identifier)
Lynch DH, Ramsdell F, Alderson MR (December 1995). "Fas and FasL in the homeostatic regulation of immune responses". Immunology Today. 16 (12): 569–574. doi:10.1016/0167-5699(95)80079-4. PMID 8579749. /wiki/Doi_(identifier)
Rengarajan J, Mittelstadt PR, Mages HW, Gerth AJ, Kroczek RA, Ashwell JD, et al. (March 2000). "Sequential involvement of NFAT and Egr transcription factors in FasL regulation". Immunity. 12 (3): 293–300. doi:10.1016/S1074-7613(00)80182-X. PMID 10755616. https://doi.org/10.1016%2FS1074-7613%2800%2980182-X
Dolicka D, Sobolewski C, Correia de Sousa M, Gjorgjieva M, Foti M (September 2020). "mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer". International Journal of Molecular Sciences. 21 (18): 6648. doi:10.3390/ijms21186648. PMC 7554771. PMID 32932781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554771
Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I (January 2001). "Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity". Cancer Research. 61 (2): 577–581. PMID 11212252. https://aacrjournals.org/cancerres/article/61/2/577/507869/Matrix-Metalloproteinase-7-mediated-Cleavage-of
Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, et al. (July 2002). "c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis". The EMBO Journal. 21 (14): 3704–3714. doi:10.1093/emboj/cdf356. PMC 125398. PMID 12110583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC125398
Wertz IE, Dixit VM (January 2010). "Regulation of death receptor signaling by the ubiquitin system". Cell Death and Differentiation. 17 (1): 14–24. doi:10.1038/cdd.2009.168. PMID 19893571. /wiki/Doi_(identifier)
Seyrek K, Espe J, Reiss E, Lavrik IN (November 2024). "The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System". Cells. 13 (21): 1814. doi:10.3390/cells13211814. PMC 11545656. PMID 39513921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545656
Tummers B, Green DR (May 2017). "Caspase-8: regulating life and death". Immunological Reviews. 277 (1): 76–89. doi:10.1111/imr.12541. PMC 5417704. PMID 28462525. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417704
Seyrek K, Espe J, Reiss E, Lavrik IN (November 2024). "The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System". Cells. 13 (21): 1814. doi:10.3390/cells13211814. PMC 11545656. PMID 39513921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545656
Wajant H, Pfizenmaier K, Scheurich P (February 2003). "Non-apoptotic Fas signaling". Cytokine & Growth Factor Reviews. 14 (1): 53–66. doi:10.1016/S1359-6101(02)00072-2. PMID 12485619. /wiki/Doi_(identifier)
Seyrek K, Espe J, Reiss E, Lavrik IN (November 2024). "The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System". Cells. 13 (21): 1814. doi:10.3390/cells13211814. PMC 11545656. PMID 39513921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545656
Gajate C, Mollinedo F (March 2005). "Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy". The Journal of Biological Chemistry. 280 (12): 11641–11647. doi:10.1074/jbc.M411781200. PMID 15659383. https://doi.org/10.1074%2Fjbc.M411781200
Micheau O, Tschopp J (July 2003). "Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes". Cell. 114 (2): 181–190. doi:10.1016/s0092-8674(03)00521-x. PMID 12887920. S2CID 17145731. /wiki/Doi_(identifier)
Gajate C, Mollinedo F (March 2005). "Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy". The Journal of Biological Chemistry. 280 (12): 11641–11647. doi:10.1074/jbc.M411781200. PMID 15659383. https://doi.org/10.1074%2Fjbc.M411781200
Parlato S, Giammarioli AM, Logozzi M, Lozupone F, Matarrese P, Luciani F, et al. (October 2000). "CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway". The EMBO Journal. 19 (19): 5123–5134. doi:10.1093/emboj/19.19.5123. PMC 302100. PMID 11013215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC302100
Gajate C, Mollinedo F (March 2005). "Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy". The Journal of Biological Chemistry. 280 (12): 11641–11647. doi:10.1074/jbc.M411781200. PMID 15659383. https://doi.org/10.1074%2Fjbc.M411781200
Micheau O, Tschopp J (July 2003). "Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes". Cell. 114 (2): 181–190. doi:10.1016/s0092-8674(03)00521-x. PMID 12887920. S2CID 17145731. /wiki/Doi_(identifier)
Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, et al. (May 2002). "Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178)". FEBS Letters. 519 (1–3): 50–58. doi:10.1016/s0014-5793(02)02709-6. PMID 12023017. S2CID 26765451. /wiki/Doi_(identifier)
Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, et al. (December 2001). "Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor". FEBS Letters. 509 (2): 255–262. doi:10.1016/s0014-5793(01)03174-x. PMID 11741599. S2CID 33084576. /wiki/Doi_(identifier)
Hane M, Lowin B, Peitsch M, Becker K, Tschopp J (October 1995). "Interaction of peptides derived from the Fas ligand with the Fyn-SH3 domain". FEBS Letters. 373 (3): 265–268. Bibcode:1995FEBSL.373..265H. doi:10.1016/0014-5793(95)01051-f. PMID 7589480. S2CID 24130275. https://doi.org/10.1016%2F0014-5793%2895%2901051-f
Gajate C, Mollinedo F (March 2005). "Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy". The Journal of Biological Chemistry. 280 (12): 11641–11647. doi:10.1074/jbc.M411781200. PMID 15659383. https://doi.org/10.1074%2Fjbc.M411781200
Micheau O, Tschopp J (July 2003). "Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes". Cell. 114 (2): 181–190. doi:10.1016/s0092-8674(03)00521-x. PMID 12887920. S2CID 17145731. /wiki/Doi_(identifier)
Starling GC, Bajorath J, Emswiler J, Ledbetter JA, Aruffo A, Kiener PA (April 1997). "Identification of amino acid residues important for ligand binding to Fas". The Journal of Experimental Medicine. 185 (8): 1487–1492. doi:10.1084/jem.185.8.1487. PMC 2196280. PMID 9126929. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196280
Schneider P, Bodmer JL, Holler N, Mattmann C, Scuderi P, Terskikh A, et al. (July 1997). "Characterization of Fas (Apo-1, CD95)-Fas ligand interaction". The Journal of Biological Chemistry. 272 (30): 18827–18833. doi:10.1074/jbc.272.30.18827. PMID 9228058. https://doi.org/10.1074%2Fjbc.272.30.18827
Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, et al. (May 2002). "Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178)". FEBS Letters. 519 (1–3): 50–58. doi:10.1016/s0014-5793(02)02709-6. PMID 12023017. S2CID 26765451. /wiki/Doi_(identifier)
Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, et al. (December 2001). "Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor". FEBS Letters. 509 (2): 255–262. doi:10.1016/s0014-5793(01)03174-x. PMID 11741599. S2CID 33084576. /wiki/Doi_(identifier)
Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, et al. (May 2002). "Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178)". FEBS Letters. 519 (1–3): 50–58. doi:10.1016/s0014-5793(02)02709-6. PMID 12023017. S2CID 26765451. /wiki/Doi_(identifier)
Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS (May 1999). "A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis". The Journal of Biological Chemistry. 274 (20): 13733–13736. doi:10.1074/jbc.274.20.13733. PMID 10318773. https://doi.org/10.1074%2Fjbc.274.20.13733
Hsu TL, Chang YC, Chen SJ, Liu YJ, Chiu AW, Chio CC, et al. (May 2002). "Modulation of dendritic cell differentiation and maturation by decoy receptor 3". Journal of Immunology. 168 (10): 4846–4853. doi:10.4049/jimmunol.168.10.4846. PMID 11994433. https://doi.org/10.4049%2Fjimmunol.168.10.4846
Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, et al. (December 1998). "Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer". Nature. 396 (6712): 699–703. Bibcode:1998Natur.396..699P. doi:10.1038/25387. PMID 9872321. S2CID 4427455. /wiki/Bibcode_(identifier)
Arakaki R, Yamada A, Kudo Y, Hayashi Y, Ishimaru N (2014). "Mechanism of activation-induced cell death of T cells and regulation of FasL expression". Critical Reviews in Immunology. 34 (4): 301–314. doi:10.1615/CritRevImmunol.2014009988. PMID 24941158. /wiki/Doi_(identifier)
Matson DR, Yang DT (February 2020). "Autoimmune Lymphoproliferative Syndrome: An Overview". Archives of Pathology & Laboratory Medicine. 144 (2): 245–251. doi:10.5858/arpa.2018-0190-RS. PMC 10415410. PMID 30958694. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415410
Strasser A, Jost PJ, Nagata S (February 2009). "The many roles of FAS receptor signaling in the immune system". Immunity. 30 (2): 180–192. doi:10.1016/j.immuni.2009.01.001. PMC 2956119. PMID 19239902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956119
Restifo NP (May 2000). "Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape". Nature Medicine. 6 (5): 493–495. doi:10.1038/74955. PMC 1955754. PMID 10802692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1955754
Whiteside TL, Rabinowich H (June 1998). "The role of Fas/FasL in immunosuppression induced by human tumors". Cancer Immunology, Immunotherapy. 46 (4): 175–184. doi:10.1007/s002620050476. PMC 11037378. PMID 9671140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037378
Strand S, Galle PR (February 1998). "Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications". Molecular Medicine Today. 4 (2): 63–68. doi:10.1016/S1357-4310(97)01191-X. PMID 9547792. /wiki/Doi_(identifier)
Peter ME, Krammer PH (January 2003). "The CD95(APO-1/Fas) DISC and beyond". Cell Death and Differentiation. 10 (1): 26–35. doi:10.1038/sj.cdd.4401186. PMID 12655293. /wiki/Doi_(identifier)
Martinez OM, Krams SM (January 1999). "Involvement of Fas-Fas ligand interactions in graft rejection". International Reviews of Immunology. 18 (5–6): 527–546. doi:10.3109/08830189909088497. PMID 10672500. /wiki/Doi_(identifier)
Takeuchi T, Ueki T, Nishimatsu H, Kajiwara T, Ishida T, Jishage K, et al. (January 1999). "Accelerated rejection of Fas ligand-expressing heart grafts". Journal of Immunology. 162 (1): 518–522. doi:10.4049/jimmunol.162.1.518. PMID 9886428. /wiki/Doi_(identifier)
Strand S, Galle PR (February 1998). "Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications". Molecular Medicine Today. 4 (2): 63–68. doi:10.1016/S1357-4310(97)01191-X. PMID 9547792. /wiki/Doi_(identifier)