These agents work by binding to phosphate in the GI tract, thereby making it unavailable to the body for absorption. Hence, these drugs are usually taken with meals to bind any phosphate that may be present in the ingested food. Phosphate binders may be simple molecular entities (such as magnesium, aluminium, calcium, or lanthanum salts) that react with phosphate and form an insoluble compound.
Calcium carbonate
Calcium-based phosphate binders, such as calcium carbonate, directly decrease phosphate levels by creating insoluble calcium–phosphate complexes which gets eliminated in the feces.1
Lanthanum carbonate
Non-calcium-based phosphate binders, including lanthanum carbonate, form insoluble complexes with phosphates in food, thereby reducing the amount of phosphate in the body.2
Sevelamer carbonate
Sevelamer is an insoluble polymeric amine, which is protonated once in the intestines and this allows it to bind dietary phosphate. Phosphates are eliminated along with sevelamer, leading to a decrease in the body's phosphate levels.3
For people with chronic kidney failure, controlling serum phosphate is important because it is associated with bone pathology and regulated together with serum calcium by the parathyroid hormone (PTH).[1]
There have been limited trials comparing phosphate binders to placebo in the treatment of hyperphosphatemia in people with chronic kidney disease. When compared with people receiving calcium-based binders, people taking sevelamer have a reduced all-cause mortality.13
Daoud, Kirollos; Anwar, Nihad; Nguyen, Timothy (2023). "The Role of Iron-Based Phosphate Binder in the Treatment of Hyperphosphatemia". Nephrology Nursing Journal. 50 (2): 140. doi:10.37526/1526-744x.2023.50.2.140. ISSN 1526-744X. https://dx.doi.org/10.37526/1526-744x.2023.50.2.140 ↩
Jadav, Paresh R.; Husain, S. Ali; Mohan, Sumit; Crew, Russell (May 2022). "Non calcium phosphate binders - Is there any evidence of benefit". Current Opinion in Nephrology & Hypertension. 31 (3): 288–296. doi:10.1097/MNH.0000000000000796. ISSN 1062-4821 – via Ovid. https://journals.lww.com/10.1097/MNH.0000000000000796 ↩
Patel, L; Bernard, LM; Elder, GJ (14 December 2015). "Sevelamer versus calcium-based binders for treatment of hyperphosphatemia in CKD: a meta-analysis of randomized controlled trials". Clinical Journal of the American Society of Nephrology. 11 (2): 232–244. doi:10.2215/CJN.06800615. PMC 4741042. PMID 26668024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741042 ↩
Burtis, C.A.; Ashwood, E.R. and Bruns, D.E. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 5th Edition. Elsevier. pp1552 ↩