Let u = u(x), x = (x1, ..., xn) be a C2 function which satisfies the differential inequality
in an open domain (connected open subset of Rn) Ω, where the symmetric matrix aij = aji(x) is locally uniformly positive definite in Ω and the coefficients aij, bi are locally bounded. If u takes a maximum value M in Ω then u ≡ M.
The coefficients aij, bi are just functions. If they are known to be continuous then it is sufficient to demand pointwise positive definiteness of aij on the domain.
It is usually thought that the Hopf maximum principle applies only to linear differential operators L. In particular, this is the point of view taken by Courant and Hilbert's Methoden der mathematischen Physik. In the later sections of his original paper, however, Hopf considered a more general situation which permits certain nonlinear operators L and, in some cases, leads to uniqueness statements in the Dirichlet problem for the mean curvature operator and the Monge–Ampère equation.
If the domain Ω {\displaystyle \Omega } has the interior sphere property (for example, if Ω {\displaystyle \Omega } has a smooth boundary), slightly more can be said. If in addition to the assumptions above, u ∈ C 1 ( Ω ¯ ) {\displaystyle u\in C^{1}({\overline {\Omega }})} and u takes a maximum value M at a point x0 in ∂ Ω {\displaystyle \partial \Omega } , then for any outward direction ν at x0, there holds ∂ u ∂ ν ( x 0 ) > 0 {\displaystyle {\frac {\partial u}{\partial \nu }}(x_{0})>0} unless u ≡ M {\displaystyle u\equiv M} .1
Han, Qing; Lin, Fanghua (2011). Elliptic Partial Differential Equations. American Mathematical Soc. p. 28. ISBN 9780821853139. 9780821853139 ↩