The direct measurement of the EBL is difficult mainly due to the contribution of zodiacal light that is orders of magnitude higher than the EBL. Different groups have claimed the detection of the EBL in the optical and near-infrared. However, it has been proposed that these analyses have been contaminated by zodiacal light. Recently, two independent groups using different technique have claimed the detection of the EBL in the optical with no contamination from zodiacal light.
There are also other techniques that set limits to the background. It is possible to set lower limits from deep galaxy surveys. On the other hand, VHE observations of extragalactic sources set upper limits to the EBL.
There are empirical approaches that predict the overall SED of the EBL in the local universe as well as its evolution over time. These types of modeling can be divided in four different categories according to:
(i) Forward evolution, which begins with cosmological initial conditions and follows a forward evolution with time by means of semi-analytical models of galaxy formation.
(ii) Backward evolution, which begins with existing galaxy populations and extrapolates them backwards in time.
(iv) Evolution of the galaxy populations that is directly observed over the range of redshifts that contribute significantly to the EBL.
Overbye, Dennis (3 December 2018). "All the Light There Is to See? 4 x 1084 Photons". The New York Times. Retrieved 4 December 2018. /wiki/Dennis_Overbye
Aharonian, F. A., Very high energy cosmic gamma radiation: a crucial window on the extreme universe, River Edge, New Jersey: World Scientific Publishing, 2004 /wiki/Felix_A._Aharonian
Bernstein, R. A., 2007, ApJ, 666, 663
Cambrésy, L.; Reach, W. T.; Beichman, C. A.; Jarrett, T. H., 2001, ApJ, 555, 563.
Matsumoto T., et al., 2005, ApJ, 626, 31
Mattila, K., 2006, MNRAS, 372, 1253
Matsuoka, Y.; Ienaka, N.; Kawara, K.; Oyabu, S.; 2011, ApJ, 736, 119
Mattila, K.; Lehtinen, K.; Vaisanen, P.; von Appen-Schnur, G.; Leinert, C., 2011, Proceedings of the IAU 284 Symposium SED, arXiv:1111.6747
Domínguez, Alberto; Primack, Joel R.; Bell, Trudy E. (2015). "How Astronomers Discovered the Universe's Hidden Light". Scientific American. 312 (6): 38–43. doi:10.1038/scientificamerican0615-38. PMID 26336684. /wiki/Doi_(identifier)
Madau, P.; Pozzetti, L., 2000, MNRAS, 312, L9
Keenan, R. C.; Barger, A. J.; Cowie, L. L.; Wang, W. H., 2010, ApJ, 723, 40
Aharonian, F., et al., 2006, Nature, 440, 1018
Mazin, D.; Raue, M., 2007, A&A, 471, 439
Albert, J., et al., 2008, Science, 320, 1752
Overbye, Dennis (3 December 2018). "All the Light There Is to See? 4 x 1084 Photons". The New York Times. Retrieved 4 December 2018. /wiki/Dennis_Overbye
The Fermi-LAT Collaboration (30 November 2018). "A gamma-ray determination of the Universe's star formation history". Science. 362 (6418): 1031–1034. arXiv:1812.01031. Bibcode:2018Sci...362.1031F. doi:10.1126/science.aat8123. PMID 30498122. /wiki/Science_(journal)
Domínguez et al. 2011, MNRAS, 410, 2556
Primack, J. R.; Bullock, J. S.; Somerville, R. S.; MacMinn, D., 1999, APh, 11, 93
Somerville, R. S.; Gilmore, R. C.; Primack, J. R.; Domínguez, A., 2012, arXiv:1104.0669
Gilmore, R. C.; Somerville, R. S.; Primack, J. R.; Domínguez, A., 2012, arXiv:1104.0671
Malkan, M. A.; Stecker, F. W., 1998, ApJ, 496, 13
Stecker ,F. W.; Malkan, M. A.; Scully, S. T., 2006, ApJ, 648, 774
Franceschini, A.; Rodighiero, G.; Vaccari, M., 2008, A&A, 487, 837 /wiki/Giulia_Rodighiero
Kneiske, T. M.; Mannheim, K.; Hartmann, D. H., 2002, A&A, 386, 1
Finke, J. D.; Razzaque, S.; Dermer, C. D., 2010, ApJ, 712, 238
Kneiske, T.~M.; Dole, H., 2010, A&A, 515, A19
Khaire, V.; Srianand, R., 2014, ApJ, 805, 33 (arXiv:1405.7038)
Domínguez et al. 2011, MNRAS, 410, 2556