The ideal FeS lattice, such as that of troilite, is non-magnetic. Magnetic properties vary with Fe content. More Fe-rich, hexagonal pyrrhotites are antiferromagnetic. However, the Fe-deficient, monoclinic Fe7S8 is ferrimagnetic. The ferromagnetism which is widely observed in pyrrhotite is therefore attributed to the presence of relatively large concentrations of iron vacancies (up to 20%) in the crystal structure. Vacancies lower the crystal symmetry. Therefore, monoclinic forms of pyrrhotite are in general more defect-rich than the more symmetrical hexagonal forms, and thus are more magnetic. Monoclinic pyrrhotite undergoes a magnetic transition known as the Besnus transition at 30 K that leads to a loss of magnetic remanence. The saturation magnetization of pyrrhotite is 0.12 tesla.
Diagnostic characteristics in hand sample include: brassy/bronze color with a grey/black streak, tabular or hexagonal crystals which show iridescence, subconchoidal fracture, metallic luster, and magnetic.
Pyrrhotite is an opaque mineral and will therefore not transmit light. As a result, pyrrhotite will display extinction when viewed under plane polarized light and cross polarized light, making identification with petrographic polarizing light microscopes difficult. Pyrrhotite, and other opaque minerals can be identified optically using a reflected light ore microscope. The following optical properties are representative of polished/puck sections using ore microscopy:
Pyrrhotite typically appears as anhedral, granular aggregates and is cream-pink to brownish in color. Weak to strong reflection pleochroism which may be seen along grain boundaries. Pyrrhotite has similar polishing hardness to pentlandite (medium), is softer than pyrite, and harder than chalcopyrite. Pyrrhotite will not display twinning or internal reflections, and its strong anisotropy from yellow to greenish-gray or grayish-blue is characteristic.
Diagnostic characteristics in polished section include: anhedral aggregates, cream-pink to brown in color and strong anisotropy.
Pyrite also decomposes into pyrrhotite in hot reductive technogenic environments, such as blast furnaces and direct coal liquefaction (in which it is an important catalyst).
The following are some of the locations worldwide where pyrrhotite has been reported during mining:
If pyrrhotite-containing rocks are crushed and used as aggregate within concrete, then the pyrrhotite creates a problem in the production of concrete. Pyrrhotite has been linked to crumbling concrete basements in Quebec, Massachusetts and Connecticut when local quarries included it in their concrete mixtures. Many houses in Ireland, particularly in County Donegal, have also been affected by inclusion of rocks containing pyrrhotite in concrete blocks. The iron sulfide it contains can naturally react with oxygen and water, and over time pyrrhotite breaks down into sulfuric acid and secondary minerals like ettringite, thaumasite and gypsum. These secondary products occupy a larger volume than pyrrhotite, which expands and cracks the concrete leading to home foundation or block failure.
Haldar, S. K. (2017). Platinum-nickel-chromium deposits : geology, exploration and reserve base. Elsevier. p.12 ISBN 978-0-12-802041-8.
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. "Inorganic Chemistry" W. H. Freeman, New York, 2006. ISBN 0-7167-4878-9.[page needed] /wiki/ISBN_(identifier)
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html
Barnes, Hubert Lloyd (1997). Geochemistry of hydrothermal ore deposits. John Wiley and Sons. pp. 382–390. ISBN 0-471-57144-X. 0-471-57144-X
Klein, Cornelis and Cornelius S. Hurlbut, Jr., Manual of Mineralogy, Wiley, 20th ed, 1985, pp. 278–9 ISBN 0-471-80580-7 /wiki/ISBN_(identifier)
Sagnotti, L., 2007, Iron Sulfides; in: Encyclopedia of Geomagnetism and Paleomagnetism; (Editors David Gubbins and Emilio Herrero-Bervera), Springer, 1054 pp., p. 454-459.
Atak, Suna; Önal, Güven; Çelik, Mehmet Sabri (1998). Innovations in Mineral and Coal Processing. Taylor & Francis. p. 131. ISBN 90-5809-013-2. 90-5809-013-2
Volk, Michael W.R.; Gilder, Stuart A.; Feinberg, Joshua M. (1 December 2016). "Low-temperature magnetic properties of monoclinic pyrrhotite with particular relevance to the Besnus transition". Geophysical Journal International. 207 (3): 1783–1795. doi:10.1093/gji/ggw376. https://doi.org/10.1093%2Fgji%2Fggw376
Svoboda, Jan (2004). Magnetic techniques for the treatment of materials. Springer. p. 33. ISBN 1-4020-2038-4. 1-4020-2038-4
"Pyrrhotite: Physical properties, uses, composition". geology.com. Retrieved 2023-02-20. https://geology.com/minerals/pyrrhotite.shtml#:~:text=Pyrrhotite%20is%20relatively%20easy%20to,are%20at%20least%20slightly%20magnetic
"Pyrrhotite: Physical properties, uses, composition". geology.com. Retrieved 2023-02-20. https://geology.com/minerals/pyrrhotite.shtml#:~:text=Pyrrhotite%20is%20relatively%20easy%20to,are%20at%20least%20slightly%20magnetic
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html
"Pyrite" (PDF). rruff.info. Retrieved 2023-02-20. https://rruff.info/doclib/hom/pyrite.pdf
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html
"Pyrite" (PDF). rruff.info. Retrieved 2023-02-20. https://rruff.info/doclib/hom/pyrite.pdf
"Chalcopyrite" (PDF). handbookofmineralogy. Retrieved 2023-02-20. https://www.handbookofmineralogy.org/pdfs/chalcopyrite.pdf
"Pentlandite" (PDF). handbookofmineralogy. Retrieved 2023-02-20. https://www.handbookofmineralogy.org/pdfs/pentlandite.pdf
"Pyrrhotite: Physical properties, uses, composition". geology.com. Retrieved 2023-02-20. https://geology.com/minerals/pyrrhotite.shtml#:~:text=Pyrrhotite%20is%20relatively%20easy%20to,are%20at%20least%20slightly%20magnetic
"Reflected light microscopy – WikiLectures". www.wikilectures.eu. Retrieved 2024-01-09. https://www.wikilectures.eu/w/Reflected_light_microscopy
Spry, P. G., & Gedlinske, B. (1987). Tables for the determination of common opaque minerals. Economic Geology Pub.
Spry, P. G., & Gedlinske, B. (1987). Tables for the determination of common opaque minerals. Economic Geology Pub.
Spry, P. G., & Gedlinske, B. (1987). Tables for the determination of common opaque minerals. Economic Geology Pub.
Spry, P. G., & Gedlinske, B. (1987). Tables for the determination of common opaque minerals. Economic Geology Pub.
Spry, P. G., & Gedlinske, B. (1987). Tables for the determination of common opaque minerals. Economic Geology Pub.
Klein, Cornelis and Cornelius S. Hurlbut, Jr., Manual of Mineralogy, Wiley, 20th ed, 1985, pp. 278–9 ISBN 0-471-80580-7 /wiki/ISBN_(identifier)
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
"Abundance of Elements in the Earth’s Crust and in the Sea," in CRC Handbook of Chemistry and Physics, 103rd Edition (Internet Version 2022), John R. Rumble, ed., CRC Press/Taylor & Francis, Boca Raton, FL.
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
"Abundance of Elements in the Earth’s Crust and in the Sea," in CRC Handbook of Chemistry and Physics, 103rd Edition (Internet Version 2022), John R. Rumble, ed., CRC Press/Taylor & Francis, Boca Raton, FL.
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Zheng, Zhuang; You, Yang; Guo, Jiabao; Li, Gang; You, Zhixiong; Lv, Xuewei (2022-08-23). "Pyrolysis Behavior of Pyrite under a CO–H2 Atmosphere". ACS Omega. 7 (33): 29116–29124. doi:10.1021/acsomega.2c02991. PMC 9404462. PMID 36033700. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404462
Dai, Hao-shan; Tian, Lei; Xiong, Yan-kun; Feng, Fu-xiang; Yang, Yong; Ma, Zhi; Guo, Qiang; Liu, Yuan (2022). "Research of hydrogen action during pre-sulfidation of direct coal liquefaction catalyst". Journal of Fuel Chemistry and Technology. 50 (9): 1191–1202. doi:10.1016/S1872-5813(22)60008-2. ISSN 1872-5813. https://www.sciencedirect.com/science/article/abs/pii/S1872581322600082
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J. L., & Horton, J. D. (2020). Data to accompany U.S. Geological Survey Fact Sheet 2020–3017: Pyrrhotite distribution in the conterminous United States [Data set]. U.S. Geological Survey. https://doi.org/10.5066/P9QSWBU6.
https://doi.org/10.5066/P9QSWBU6
U.S. Geological Survey, 2019, Mineral Resource Data System: accessed April 11, 2023, at http://mrdata.usgs.gov/mrds/.
https://mrdata.usgs.gov/mrds/
Mindat.org, 2019, Mines, minerals and more: accessed April 11, 2023, at https://mindat.org/.
https://mindat.org/
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html
Grice, J.D., Gault, R.A. (1977) The Bluebell Mine, Riondel, British Columbia, Canada. The Mineralogical Record 8:1, 33–36. Moynihan, D.P., Pattison, D.R. (2011) The origin of mineralized fractures at the Bluebell mine site, Riondel, British Columbia. Economic Geology, 106:6, 1043–1058.
Tavchandjian, O. (1992). Analyse quantitative de la distribution spatiale de la fracturation et de la minéralisation dans les zones de cisaillement: applications aux gisements du complexe du lac Dore (Chicougamau-Québec). Université du Québec à Chicoutimi.
Ague, J. J. (1995): Deep Crustal Growth of Quartz, Kyanite and Garnet into Large-Aperature, fluid-filled fractures, northeastern Connecticut, USA. Journal of Metamorphic Geology: 13: 299–314.
Haynes, Simon John, Hill, Patrick Arthur (1970) Pyrrhotite phases and pyrrhotite-pyrite relationships; Renison Bell, Tasmania. Economic Geology, 65 (7), 838–848.
Henwood, W.J. (1871): Transactions of the Royal Geological Society of Cornwall 8(1), 168–370.
Scipioni Vial, D., Ed DeWitt, E., Lobato, L.M., and Thorman, C.H. (2007) The geology of the Morro Velho gold deposit in the Archean Rio dasVelhas greenstone belt, Quadrilátero Ferrífero, Brazil. Ore Geology Reviews, 32, 511–542.
"Major Mines & Projects | Minas-Rio Mine". miningdataonline.com. Retrieved 2023-04-11. https://miningdataonline.com/property/552/Minas-Rio-Mine.aspx
Benvenuti, M., Mascaro, I., Corsini, F., Ferrari, M., Lattanzi, P., Parrini, P., Costagliola, P., Taneli, G. (2000) Environmental mineralogy and geochemistry of waste dumps at the Pb(Zn)-Ag Bottino mine, Apuane Alps, Italy. European Journal of Mineralogy: 12(2): 441–453.
"Bottino Mine". mindat.org. March 27, 2023. Retrieved April 11, 2023. https://www.mindat.org/loc-8824.html
Kołodziejczyk, J., Pršek, J., Voudouris, P., Melfos, V. and Asllani, B., (2016) Sn-bearing minerals and associated sphalerite from lead-zinc deposits, Kosovo: An electron microprobe and LA-ICP-MS study. Minerals, 6(2), p.42.
"Pyrrhotite". mindat.org. Retrieved March 24, 2023. https://www.mindat.org/min-3328.html
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html
"USGS Publishes Map of Potential Pyrrhotite Occurrences". USGS.gov. April 29, 2020. Retrieved April 11, 2023. https://www.usgs.gov/news/national-news-release/new-usgs-map-helps-identify-where-pyrrhotite-mineral-can-cause-concrete
Hussey, Kristin; Foderaro, Lisa W. (7 June 2016). "With Connecticut Foundations Crumbling, Your Home Is Now Worthless". The New York Times. Retrieved 2016-06-08. https://www.nytimes.com/2016/06/08/nyregion/with-connecticut-foundations-crumbling-your-home-is-now-worthless.html
"Crumbling Foundations". nbcconnecticut.com. 22 July 2015. Retrieved 2016-06-08. http://www.nbcconnecticut.com/troubleshooters/Troubleshooters-Investigation-Crumbling-Foundations-Home-Basement-Concrete-318061181.html
"U.S. GAO – Crumbling Foundations: Extent of Homes with Defective Concrete Is Not Fully Known and Federal Options to Aid Homeowners Are Limited". gao.gov. Retrieved 2021-02-22. https://www.gao.gov/products/GAO-20-649
Brough, C.; Staniforth, B.; Garner, C.; Garside, R.; Colville, R.; Strongman, J.; Fletcher, J. (8 December 2023). "High risk concrete blocks from County Donegal: The geology of defective aggregate and the wider implications". Construction and Building Materials. 408. doi:10.1016/j.conbuildmat.2023.133404. https://doi.org/10.1016%2Fj.conbuildmat.2023.133404
Leemann, Andreas; Lothenbach, Barbara; Münch, Beat; Campbell, Thomas; Dunlop, Paul (June 2023). "The "mica crisis" in Donegal, Ireland – A case of internal sulfate attack?". Cement and Concrete Research. 168. doi:10.1016/j.cemconres.2023.107149. https://www.sciencedirect.com/science/article/pii/S0008884623000613
"USGS Publishes Map of Potential Pyrrhotite Occurrences". USGS.gov. April 29, 2020. Retrieved April 11, 2023. https://www.usgs.gov/news/national-news-release/new-usgs-map-helps-identify-where-pyrrhotite-mineral-can-cause-concrete
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Hussey, Kristin; Foderaro, Lisa W. (7 June 2016). "With Connecticut Foundations Crumbling, Your Home Is Now Worthless". The New York Times. Retrieved 2016-06-08. https://www.nytimes.com/2016/06/08/nyregion/with-connecticut-foundations-crumbling-your-home-is-now-worthless.html
"Crumbling Foundations". nbcconnecticut.com. 22 July 2015. Retrieved 2016-06-08. http://www.nbcconnecticut.com/troubleshooters/Troubleshooters-Investigation-Crumbling-Foundations-Home-Basement-Concrete-318061181.html
"U.S. GAO – Crumbling Foundations: Extent of Homes with Defective Concrete Is Not Fully Known and Federal Options to Aid Homeowners Are Limited". gao.gov. Retrieved 2021-02-22. https://www.gao.gov/products/GAO-20-649
"USGS Publishes Map of Potential Pyrrhotite Occurrences". USGS.gov. April 29, 2020. Retrieved April 11, 2023. https://www.usgs.gov/news/national-news-release/new-usgs-map-helps-identify-where-pyrrhotite-mineral-can-cause-concrete
Mauk, J.L., Crafford, T.C., Horton, J.D., San Juan, C.A., and Robinson, G.R., Jr., 2020, Pyrrhotite distribution in the conterminous United States, 2020: U.S. Geological Survey Fact Sheet 2020–3017, 4 p., https://doi.org/10.3133/fs20203017.
https://doi.org/10.3133/fs20203017
Haldar, S. K. (2017). Platinum-nickel-chromium deposits : geology, exploration and reserve base. Elsevier. p.24. ISBN 978-0-12-802041-8.
Haldar, S. K. (2017). Platinum-nickel-chromium deposits : geology, exploration and reserve base. Elsevier. p.24. ISBN 978-0-12-802041-8.
Kolahdoozan, M. & Yen, W.T.. (2002). Pyrrhotite – An Important Gangue and a Source for Environmental Pollution. Green Processing 2002 – Proceedings: International Conference on the Sustainable Proceesing of Minerals. 245–249.
Haldar, S. K. (2017). Platinum-nickel-chromium deposits : geology, exploration and reserve base. Elsevier. p.24. ISBN 978-0-12-802041-8.
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html
Haldar, S. K. (2017). Platinum-nickel-chromium deposits : geology, exploration and reserve base. Elsevier. p.24. ISBN 978-0-12-802041-8.
Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291–320. https://doi.org/10.1180/mgm.2021.43.
https://doi.org/10.1180/mgm.2021.43
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 https://doi.org/10.2138/am.2010.3371.
https://doi.org/10.2138/am.2010.3371
The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). https://www.mineralogicalassociation.ca/wordpress/wp-content/uploads/2020/01/symbols.pdf.
https://www.mineralogicalassociation.ca/wordpress/wp-content/uploads/2020/01/symbols.pdf
"Pyrrhotite". Mindat.org. Retrieved 2009-07-07. http://www.mindat.org/min-3328.html