Courcelle & Olariu (2000) and Corneil & Rotics (2005) proved the following bounds on the clique-width of certain graphs:
The graphs of clique-width three can be recognized, and a construction sequence found for them, in polynomial time using an algorithm based on split decomposition.
For graphs of unbounded clique-width, it is NP-hard to compute the clique-width exactly, and also NP-hard to obtain an approximation with sublinear additive error. However, when the clique-width is bounded, it is possible to obtain a construction sequence of bounded width (exponentially larger than the actual clique-width) in polynomial time, in particular in quadratic time in the number of vertices. It remains open whether the exact clique-width, or a tighter approximation to it, can be calculated in fixed-parameter tractable time, whether it can be calculated in polynomial time for every fixed bound on the clique-width, or even whether the graphs of clique-width four can be recognized in polynomial time.
The theory of graphs of bounded clique-width resembles that for graphs of bounded treewidth, but unlike treewidth allows for dense graphs. If a family of graphs has bounded clique-width, then either it has bounded treewidth or every complete bipartite graph is a subgraph of a graph in the family. Treewidth and clique-width are also connected through the theory of line graphs: a family of graphs has bounded treewidth if and only if their line graphs have bounded clique-width.
Courcelle, Engelfriet & Rozenberg (1993). - Courcelle, Bruno; Engelfriet, Joost; Rozenberg, Grzegorz (1993), "Handle-rewriting hypergraph grammars", Journal of Computer and System Sciences, 46 (2): 218–270, doi:10.1016/0022-0000(93)90004-G, MR 1217156 https://doi.org/10.1016%2F0022-0000%2893%2990004-G
Courcelle (1993). - Courcelle, B. (1993), "Monadic second-order logic and hypergraph orientation", Proceedings of Eighth Annual IEEE Symposium on Logic in Computer Science (LICS '93), pp. 179–190, doi:10.1109/LICS.1993.287589, S2CID 39254668 https://doi.org/10.1109%2FLICS.1993.287589
Courcelle & Olariu (2000). - Courcelle, B.; Olariu, S. (2000), "Upper bounds to the clique width of graphs", Discrete Applied Mathematics, 101 (1–3): 77–144, doi:10.1016/S0166-218X(99)00184-5 https://digitalcommons.odu.edu/computerscience_fac_pubs/122
Golumbic & Rotics (2000). - Golumbic, Martin Charles; Rotics, Udi (2000), "On the clique-width of some perfect graph classes", International Journal of Foundations of Computer Science, 11 (3): 423–443, doi:10.1142/S0129054100000260, MR 1792124 https://doi.org/10.1142%2FS0129054100000260
Brandstädt & Lozin (2003). - Brandstädt, A.; Lozin, V.V. (2003), "On the linear structure and clique-width of bipartite permutation graphs", Ars Combinatoria, 67: 273–281, CiteSeerX 10.1.1.16.2000 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2000
Brandstädt et al. (2005); Brandstädt et al. (2006). - Brandstädt, A.; Dragan, F.F.; Le, H.-O.; Mosca, R. (2005), "New graph classes of bounded clique-width", Theory of Computing Systems, 38 (5): 623–645, CiteSeerX 10.1.1.3.5994, doi:10.1007/s00224-004-1154-6, S2CID 2309695 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.5994
Brandstädt & Hundt (2008); Gurski & Wanke (2009). - Brandstädt, Andreas; Hundt, Christian (2008), "Ptolemaic graphs and interval graphs are leaf powers", LATIN 2008: Theoretical informatics, Lecture Notes in Comput. Sci., vol. 4957, Springer, Berlin, pp. 479–491, doi:10.1007/978-3-540-78773-0_42, MR 2472761 https://doi.org/10.1007%2F978-3-540-78773-0_42
Courcelle & Olariu (2000), Corollary 3.3. - Courcelle, B.; Olariu, S. (2000), "Upper bounds to the clique width of graphs", Discrete Applied Mathematics, 101 (1–3): 77–144, doi:10.1016/S0166-218X(99)00184-5 https://digitalcommons.odu.edu/computerscience_fac_pubs/122
Courcelle & Olariu (2000), Theorem 4.1. - Courcelle, B.; Olariu, S. (2000), "Upper bounds to the clique width of graphs", Discrete Applied Mathematics, 101 (1–3): 77–144, doi:10.1016/S0166-218X(99)00184-5 https://digitalcommons.odu.edu/computerscience_fac_pubs/122
Corneil & Rotics (2005), strengthening Courcelle & Olariu (2000), Theorem 5.5. - Corneil, Derek G.; Rotics, Udi (2005), "On the relationship between clique-width and treewidth", SIAM Journal on Computing, 34 (4): 825–847, doi:10.1137/S0097539701385351, MR 2148860 https://doi.org/10.1137%2FS0097539701385351
Gurski & Wanke (2000). - Gurski, Frank; Wanke, Egon (2000), "The tree-width of clique-width bounded graphs without Kn,n", in Brandes, Ulrik; Wagner, Dorothea (eds.), Graph-Theoretic Concepts in Computer Science: 26th International Workshop, WG 2000, Konstanz, Germany, June 15–17, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1928, Berlin: Springer, pp. 196–205, doi:10.1007/3-540-40064-8_19, MR 1850348 https://doi.org/10.1007%2F3-540-40064-8_19
Oum & Seymour (2006). - Oum, Sang-il; Seymour, Paul (2006), "Approximating clique-width and branch-width", Journal of Combinatorial Theory, Series B, 96 (4): 514–528, doi:10.1016/j.jctb.2005.10.006, MR 2232389 https://doi.org/10.1016%2Fj.jctb.2005.10.006
Todinca (2003). - Todinca, Ioan (2003), "Coloring powers of graphs of bounded clique-width", Graph-theoretic concepts in computer science, Lecture Notes in Comput. Sci., vol. 2880, Springer, Berlin, pp. 370–382, doi:10.1007/978-3-540-39890-5_32, MR 2080095 https://doi.org/10.1007%2F978-3-540-39890-5_32
Gurski & Wanke (2009). - Gurski, Frank; Wanke, Egon (2009), "The NLC-width and clique-width for powers of graphs of bounded tree-width", Discrete Applied Mathematics, 157 (4): 583–595, doi:10.1016/j.dam.2008.08.031, MR 2499471 https://doi.org/10.1016%2Fj.dam.2008.08.031
Cogis & Thierry (2005). - Cogis, O.; Thierry, E. (2005), "Computing maximum stable sets for distance-hereditary graphs", Discrete Optimization, 2 (2): 185–188, doi:10.1016/j.disopt.2005.03.004, MR 2155518 https://doi.org/10.1016%2Fj.disopt.2005.03.004
Courcelle, Makowsky & Rotics (2000). - Courcelle, B.; Makowsky, J. A.; Rotics, U. (2000), "Linear time solvable optimization problems on graphs on bounded clique width", Theory of Computing Systems, 33 (2): 125–150, CiteSeerX 10.1.1.414.1845, doi:10.1007/s002249910009, S2CID 15402031 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.1845
Courcelle, Makowsky & Rotics (2000). - Courcelle, B.; Makowsky, J. A.; Rotics, U. (2000), "Linear time solvable optimization problems on graphs on bounded clique width", Theory of Computing Systems, 33 (2): 125–150, CiteSeerX 10.1.1.414.1845, doi:10.1007/s002249910009, S2CID 15402031 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.1845
Fomin et al. (2010). - Fomin, Fedor V.; Golovach, Petr A.; Lokshtanov, Daniel; Saurabh, Saket (2010), "Intractability of clique-width parameterizations", SIAM Journal on Computing, 39 (5): 1941–1956, CiteSeerX 10.1.1.220.1712, doi:10.1137/080742270, MR 2592039 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.1712
Dvořák & Král' (2012). - Dvořák, Zdeněk; Král', Daniel (2012), "Classes of graphs with small rank decompositions are χ-bounded", Electronic Journal of Combinatorics, 33 (4): 679–683, arXiv:1107.2161, doi:10.1016/j.ejc.2011.12.005, S2CID 5530520 https://arxiv.org/abs/1107.2161
Corneil et al. (2012). - Corneil, Derek G.; Habib, Michel; Lanlignel, Jean-Marc; Reed, Bruce; Rotics, Udi (2012), "Polynomial-time recognition of clique-width ≤ 3 graphs", Discrete Applied Mathematics, 160 (6): 834–865, doi:10.1016/j.dam.2011.03.020, MR 2901093 https://doi.org/10.1016%2Fj.dam.2011.03.020
Fellows et al. (2009). - Fellows, Michael R.; Rosamond, Frances A.; Rotics, Udi; Szeider, Stefan (2009), "Clique-width is NP-complete", SIAM Journal on Discrete Mathematics, 23 (2): 909–939, doi:10.1137/070687256, MR 2519936 https://doi.org/10.1137%2F070687256
Oum & Seymour (2006); Hliněný & Oum (2008); Oum (2008); Fomin & Korhonen (2022). - Oum, Sang-il; Seymour, Paul (2006), "Approximating clique-width and branch-width", Journal of Combinatorial Theory, Series B, 96 (4): 514–528, doi:10.1016/j.jctb.2005.10.006, MR 2232389 https://doi.org/10.1016%2Fj.jctb.2005.10.006
Fomin & Korhonen (2022). - Fomin, Fedor V.; Korhonen, Tuukka (2022), "Fast FPT-approximation of branchwidth", Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, ACM, pp. 886–899, arXiv:2111.03492, doi:10.1145/3519935.3519996, S2CID 243832882 https://arxiv.org/abs/2111.03492
Fellows et al. (2009). - Fellows, Michael R.; Rosamond, Frances A.; Rotics, Udi; Szeider, Stefan (2009), "Clique-width is NP-complete", SIAM Journal on Discrete Mathematics, 23 (2): 909–939, doi:10.1137/070687256, MR 2519936 https://doi.org/10.1137%2F070687256
Gurski & Wanke (2000). - Gurski, Frank; Wanke, Egon (2000), "The tree-width of clique-width bounded graphs without Kn,n", in Brandes, Ulrik; Wagner, Dorothea (eds.), Graph-Theoretic Concepts in Computer Science: 26th International Workshop, WG 2000, Konstanz, Germany, June 15–17, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1928, Berlin: Springer, pp. 196–205, doi:10.1007/3-540-40064-8_19, MR 1850348 https://doi.org/10.1007%2F3-540-40064-8_19
Gurski & Wanke (2007). - Gurski, Frank; Wanke, Egon (2007), "Line graphs of bounded clique-width", Discrete Mathematics, 307 (22): 2734–2754, doi:10.1016/j.disc.2007.01.020 https://doi.org/10.1016%2Fj.disc.2007.01.020
Bonnet et al. (2022). - Bonnet, Édouard; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2022), "Twin-width I: Tractable FO model checking", Journal of the ACM, 69 (1): A3:1–A3:46, arXiv:2004.14789, doi:10.1145/3486655, MR 4402362 https://arxiv.org/abs/2004.14789