A problem is said to be APX-hard if there is a PTAS reduction from every problem in APX to that problem, and to be APX-complete if the problem is APX-hard and also in APX. As a consequence of P ≠ NP ⇒ PTAS ≠ APX, if P ≠ NP is assumed, no APX-hard problem has a PTAS. In practice, reducing one problem to another to demonstrate APX-completeness is often done using other reduction schemes, such as L-reductions, which imply PTAS reductions.
One of the simplest APX-complete problems is MAX-3SAT-3, a variation of the Boolean satisfiability problem. In this problem, we have a Boolean formula in conjunctive normal form where each variable appears at most 3 times, and we wish to know the maximum number of clauses that can be simultaneously satisfied by a single assignment of true/false values to the variables.
Other APX-complete problems include:
Main article: Polynomial-time approximation scheme
PTAS (polynomial time approximation scheme) consists of problems that can be approximated to within any constant factor besides 1 in time that is polynomial to the input size, but the polynomial depends on such factor. This class is a subset of APX.
Unless P = NP, there exist problems in APX that are neither in PTAS nor APX-complete. Such problems can be thought of as having a hardness between PTAS problems and APX-complete problems, and may be called APX-intermediate. The bin packing problem is thought to be APX-intermediate. Despite not having a known PTAS, the bin packing problem has several "asymptotic PTAS" algorithms, which behave like a PTAS when the optimum solution is large, so intuitively it may be easier than problems that are APX-hard.
One other example of a potentially APX-intermediate problem is min edge coloring.
One can also define a family of complexity classes f ( n ) {\displaystyle f(n)} -APX, where f ( n ) {\displaystyle f(n)} -APX contains problems with a polynomial time approximation algorithm with a O ( f ( n ) ) {\displaystyle O(f(n))} approximation ratio. One can analogously define f ( n ) {\displaystyle f(n)} -APX-complete classes; some such classes contain well-known optimization problems. Log-APX-completeness and poly-APX-completeness are defined in terms of AP-reductions rather than PTAS-reductions; this is because PTAS-reductions are not strong enough to preserve membership in Log-APX and Poly-APX, even though they suffice for APX.
Log-APX-complete, consisting of the hardest problems that can be approximated efficiently to within a factor logarithmic in the input size, includes min dominating set when degree is unbounded.
Poly-APX-complete, consisting of the hardest problems that can be approximated efficiently to within a factor polynomial in the input size, includes max independent set in the general case.
There also exist problems that are exp-APX-complete, where the approximation ratio is exponential in the input size. This may occur when the approximation is dependent on the value of numbers within the problem instance; these numbers may be expressed in space logarithmic in their value, hence the exponential factor.