Main article: Current transformer
Current transformers (CT) are a series-connected type of instrument transformer. They are designed to present negligible load to the supply being measured and have an accurate current ratio and phase relationship to enable accurate secondary connected metering.
Current transformers are often constructed by passing a single primary turn (either an insulated cable or an uninsulated bus bar) through a well-insulated toroidal core wrapped with many turns of wire. This affords easy implementation on high voltage bushings of grid transformers and other devices by installing the secondary turn core inside high-voltage bushing insulators and using the pass-through conductor as a single turn primary.
A current clamp uses a current transformer with a split core that can be easily wrapped around a conductor in a circuit. This is a common method used in portable current measuring instruments but permanent installations use more economical types of the current transformer. Specially constructed wideband CTs are also used, usually with an oscilloscope, to measure high frequency waveforms or pulsed currents within pulsed power systems. One type provides an IR voltage output that is proportional to the measured current; another, called a Rogowski coil, requires an external integrator in order to provide a proportional output.
The CT is typically described by its current ratio from primary to secondary. A 1000:5 CT will provide an output current of 5 amperes when 1000 amperes are flowing through its primary winding. Standard secondary current ratings are 5 amperes or 1 ampere, compatible with standard measuring instruments. It is used to step down current for metering purposes for the safety of the equipments as well as operator.
Burden and accuracy are usually stated as a combined parameter due to being dependent on each other.
Care must be taken that the secondary winding of a CT is not disconnected from its low-impedance load while current flows in the primary, as this may produce a dangerously high voltage across the open secondary (especially in a relaying type CT) and could permanently affect the accuracy of the transformer.
The secondary winding can be a single ratio or have several tap points to provide a range of ratios.
Main article: Voltage transformer
"Measurement Canada Standard Dwg. No.3400 D3 Delta Connected CTs" (PDF). MEASUREMENT CANADA. Retrieved 12 December 2012. http://www.ic.gc.ca/eic/site/mc-mc.nsf/vwapj/S-E-08_AppendixA.pdf/$file/S-E-08_AppendixA.pdf#page=51 ↩
"Limits of the 0.3 and 0.6 accuracy classes for measuring current transformers". Measurement Canada. Retrieved 18 April 2013. http://www.ic.gc.ca/eic/site/mc-mc.nsf/eng/lm00147.html#Appendix ↩