Some of the earliest, published studies on sweat composition date back to the 19th century. Further studies in the 20th century began to solidify understanding of the physiology and pharmacology of the eccrine sweat gland. In-vivo and in-vitro studies from this time period, and even those continuing today, have identified numerous structural nuances and new molecules present within sweat. The first commercially adopted use for sweat diagnostics included testing of sodium and chloride levels in children for the diagnosis of cystic fibrosis. Today, one of the most popular devices for this testing is the Macroduct Sweat Collection System from ELITechGroup.
More recently, numerous studies have identified the plausibility of sweat as an alternative to blood analysis. The potential substitution for sweat versus blood analysis has many potential benefits. For example, sweat can be: extracted in a non-invasive manner via iontophoresis; extracted with little-to-no pain; and monitored continuously. There are downfalls to the technology, however. For example, demonstration of successful and reliable sweat extraction and analysis on a cohesive device has yet to be demonstrated. Furthermore, although some biomarker partitioning mechanisms are well understood and well studied, partitioning of other useful biomarkers (cytokines, peptides, etc.) are less understood.
Patches have been demonstrated to be a promising detection platform for sweat diagnostics. Simple, long-term collection devices which check for drugs of abuse or alcohol are already on the market and operate on the following principle: a user applies the patch which then collects sweat over a period of hours or days, then the patch is analyzed utilizing techniques such as GC-MS which are accurate but have the drawback of lack of continuous measurements and high costs. For example, sweat diagnostic products for illicit drugs and alcohol are manufactured and supplied by PharmChek and AlcoPro, respectively. Recently several efforts have been made to develop low cost polymer based continuous perspiration monitoring devices and are in early stages of commercialization.
Mishra A, Greaves R, Massie J (November 2005). "The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era". The Clinical Biochemist. Reviews. 26 (4): 135–53. PMC 1320177. PMID 16648884. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1320177
De Giovanni N, Fucci N (2013). "The current status of sweat testing for drugs of abuse: a review". Current Medicinal Chemistry. 20 (4): 545–61. doi:10.2174/0929867311320040006. PMID 23244520. /wiki/Doi_(identifier)
Wilke K, Martin A, Terstegen L, Biel SS (June 2007). "A short history of sweat gland biology". International Journal of Cosmetic Science. 29 (3): 169–79. doi:10.1111/j.1467-2494.2007.00387.x. PMID 18489347. https://doi.org/10.1111%2Fj.1467-2494.2007.00387.x
Wilke K, Martin A, Terstegen L, Biel SS (June 2007). "A short history of sweat gland biology". International Journal of Cosmetic Science. 29 (3): 169–79. doi:10.1111/j.1467-2494.2007.00387.x. PMID 18489347. https://doi.org/10.1111%2Fj.1467-2494.2007.00387.x
Sonner Z, Wilder E, Heikenfeld J, Kasting G, Beyette F, Swaile D, Sherman F, Joyce J, Hagen J, Kelley-Loughnane N, Naik R (May 2015). "The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications". Biomicrofluidics. 9 (3): 031301. doi:10.1063/1.4921039. PMC 4433483. PMID 26045728. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433483
Sato K, Kang WH, Saga K, Sato KT (April 1989). "Biology of sweat glands and their disorders. I. Normal sweat gland function". Journal of the American Academy of Dermatology. 20 (4): 537–63. doi:10.1016/s0190-9622(89)70063-3. PMID 2654204. /wiki/Doi_(identifier)
Brasier N, Eckstein J (2019). "Sweat as a Source of Next-Generation Digital Biomarkers". Digital Biomarkers. 3 (3): 155–165. doi:10.1159/000504387. PMC 7011725. PMID 32095774. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011725
Hoelscher JH (1899). "A Study in Perspiration.: Original Research in One Hundred and Thirteen Cases". Journal of the American Medical Association. 32: 1352–1360. doi:10.1001/jama.1899.92450510001003. https://zenodo.org/record/1447263
Nyman E, Palmlöv A (1936). "The elimination of ethyl alcohol in sweat". Skandinavisches Archiv für Physiologie. 74 (2): 155–159. doi:10.1111/j.1748-1716.1936.tb01150.x. /wiki/Doi_(identifier)
Schwartz IL, Thaysen JH (January 1956). "Excretion of sodium and potassium in human sweat". The Journal of Clinical Investigation. 35 (1): 114–20. doi:10.1172/JCI103245. PMC 438784. PMID 13278407. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC438784
Sato K (1977). "The physiology, pharmacology, and biochemistry of the eccrine sweat gland". Reviews of Physiology, Biochemistry and Pharmacology. 79: 51–131. doi:10.1007/BFb0037089. ISBN 978-3-540-08326-9. PMID 21440. 978-3-540-08326-9
Pullan NJ, Thurston V, Barber S (May 2013). "Evaluation of an inductively coupled plasma mass spectrometry method for the analysis of sweat chloride and sodium for use in the diagnosis of cystic fibrosis". Annals of Clinical Biochemistry. 50 (Pt 3): 267–70. doi:10.1177/0004563212474565. PMID 23605131. S2CID 40347024. /wiki/Doi_(identifier)
Czarnowski D, Górski J, Jóźwiuk J, Boroń-Kaczmarska A (1992). "Plasma ammonia is the principal source of ammonia in sweat". European Journal of Applied Physiology and Occupational Physiology. 65 (2): 135–7. doi:10.1007/bf00705070. PMID 1396636. S2CID 7994016. /wiki/Doi_(identifier)
Cizza G, Marques AH, Eskandari F, Christie IC, Torvik S, Silverman MN, Phillips TM, Sternberg EM (November 2008). "Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER study". Biological Psychiatry. 64 (10): 907–11. doi:10.1016/j.biopsych.2008.05.035. PMC 2610843. PMID 18657799. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610843
Banga AK, Chien YW (1988). "Iontophoretic delivery of drugs: fundamentals, developments and biomedical applications". Journal of Controlled Release. 7: 1–24. doi:10.1016/0168-3659(88)90075-2. /wiki/Doi_(identifier)
Sonner Z, Wilder E, Heikenfeld J, Kasting G, Beyette F, Swaile D, Sherman F, Joyce J, Hagen J, Kelley-Loughnane N, Naik R (May 2015). "The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications". Biomicrofluidics. 9 (3): 031301. doi:10.1063/1.4921039. PMC 4433483. PMID 26045728. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433483
Scutti S (29 October 2014). "Measuring Your Sweat, A Health Monitor And Diagnostic Device Is The Future Of Wearable Technology". Medical Daily. /wiki/Susan_Scutti
Fenner R (8 May 2015). "CoreSyte Selected as Worldwide Athletics Partner by Eccrine Systems". Business Wire. http://www.businesswire.com/news/home/20150508005547/en/CoreSyte-Selected-Worldwide-Athletics-Partner-Eccrine-Systems#.VW27LPlVhBc
Begonia R (5 December 2014). "Kenzen Wearable Optimizes Athletic Performance with Real-Time Hydration, Lactic Acid and Glucose Analysis". PR Newswire. http://www.prnewswire.com/news-releases/kenzen-wearable-optimizes-athletic-performance-with-real-time-hydration-lactic-acid-and-glucose-analysis-300005504.html
Jain V, Ochoa M, Jiang H, Rahimi R, Ziaie B (2019-06-17). "A mass-customizable dermal patch with discrete colorimetric indicators for personalized sweat rate quantification". Microsystems & Nanoengineering. 5 (1): 29. Bibcode:2019MicNa...5...29J. doi:10.1038/s41378-019-0067-0. PMC 6572848. PMID 31240108. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572848
US 10772560, Ziaie, Babak; Ochoa, Manuel P. & Jain, Vaibhav et al., "Skin-mounted hydration sensor and management system", published 2020-09-15, issued 2017-10-02, assigned to Purdue Research Foundation
https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US10772560
Heikenfeld J (22 October 2014). "Sweat Sensors Will Change How Wearables Track Your Health". IEEE Spectrum. https://spectrum.ieee.org/sweat-sensors-will-change-how-wearables-track-your-health
Free K (13 August 2014). "A Temporary Tattoo to Track Your Workout and Charge Your Phone". Popular Mechanics. http://www.popularmechanics.com/science/health/a11097/temporary-tattoo-to-track-your-workout-2491688/
Bandodkar AJ, Jia W, Wang J (2015). "Tattoo-Based Wearable Electrochemical Devices: A Review". Electroanalysis. 27 (3): 562–572. doi:10.1002/elan.201400537. /wiki/Doi_(identifier)