The branchial system is typically used for respiration and/or feeding. Many fish have modified posterior gill arches into pharyngeal jaws, often equipped with specialized pharyngeal teeth for handling particular prey items (long, sharp teeth in carnivorous moray eels compared to broad, crushing teeth in durophagous black carp). In amphibians and reptiles, the hyoid arch is modified for similar reasons. It is often used in buccal pumping and often plays a role in tongue protrusion for prey capture. In species with highly specialized ballistic tongue movements such as chameleons or some plethodontid salamanders, the hyoid system is highly modified for this purpose, while it is often hypertrophied in species which use suction feeding. Species such as snakes and monitor lizards, whose tongue has evolved into a purely sensory organ, often have very reduced hyoid systems.
The primitive arrangement is 7 (possibly 8) arches, each consisting of the same series of paired (left and right) elements. order from dorsal-most (highest) to ventral-most (lowest), these elements are the pharyngobranchial, epibranchial, ceratobranchial, hypobranchial, and basibranchial. The pharyngobranchials may articulate with the neurocranium, while the left and right basibranchials connect to each other (often fusing into a single bone). When part of the hyoid arch, the names of the bones are altered by replacing "-branchial" with "-hyal", thus "ceratobranchial" becomes "ceratohyal".5
Amniotes do not have gills. The gill arches form as pharyngeal arches during embryogenesis, and lay the basis of essential structures such as jaws, the thyroid gland, the larynx, the columella (corresponding to the stapes in mammals) and in mammals, the malleus and incus.6 Studies on placoderms also show that the shoulder girdle also originated from gill arches.7
Scott, Thomas (1996). Concise encyclopedia biology. Walter de Gruyter. p. 542. ISBN 978-3-11-010661-9. 978-3-11-010661-9 ↩
Romer, A.S. (1949): The Vertebrate Body. W.B. Saunders, Philadelphia. (2nd ed. 1955; 3rd ed. 1962; 4th ed. 1970) ↩
Szarski, Henryk (1957). "The Origin of the Larva and Metamorphosis in Amphibia". The American Naturalist. 91 (860). Essex Institute: 287. doi:10.1086/281990. JSTOR 2458911. S2CID 85231736. /wiki/Doi_(identifier) ↩
Clack, J. A. (2002): Gaining ground: the origin and evolution of tetrapods. Indiana University Press, Bloomington, Indiana. 369 pp ↩
Pradel, Alan; Maisey, John G.; Tafforeau, Paul; Mapes, Royal H.; Mallatt, Jon (16 April 2014). "A Palaeozoic shark with osteichthyan-like branchial arches". Nature. 509 (7502): 608–611. Bibcode:2014Natur.509..608P. doi:10.1038/nature13195. ISSN 1476-4687. PMID 24739974. S2CID 3504437. https://www.nature.com/articles/nature13195 ↩
Brazeau et al, Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle, Nature volume 623, pages550–554 (2023) ↩