Let ( X , ≤ ) {\displaystyle (X,\leq )} be a preordered set. An upper set in X {\displaystyle X} (also called an upward closed set, an upset, or an isotone set)2 is a subset U ⊆ X {\displaystyle U\subseteq X} that is "closed under going up", in the sense that
The dual notion is a lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal), which is a subset L ⊆ X {\displaystyle L\subseteq X} that is "closed under going down", in the sense that
The terms order ideal or ideal are sometimes used as synonyms for lower set.345 This choice of terminology fails to reflect the notion of an ideal of a lattice because a lower set of a lattice is not necessarily a sublattice.6
Given an element x {\displaystyle x} of a partially ordered set ( X , ≤ ) , {\displaystyle (X,\leq ),} the upper closure or upward closure of x , {\displaystyle x,} denoted by x ↑ X , {\displaystyle x^{\uparrow X},} x ↑ , {\displaystyle x^{\uparrow },} or ↑ x , {\displaystyle \uparrow \!x,} is defined by x ↑ X = ↑ x = { u ∈ X : x ≤ u } {\displaystyle x^{\uparrow X}=\;\uparrow \!x=\{u\in X:x\leq u\}} while the lower closure or downward closure of x {\displaystyle x} , denoted by x ↓ X , {\displaystyle x^{\downarrow X},} x ↓ , {\displaystyle x^{\downarrow },} or ↓ x , {\displaystyle \downarrow \!x,} is defined by x ↓ X = ↓ x = { l ∈ X : l ≤ x } . {\displaystyle x^{\downarrow X}=\;\downarrow \!x=\{l\in X:l\leq x\}.}
The sets ↑ x {\displaystyle \uparrow \!x} and ↓ x {\displaystyle \downarrow \!x} are, respectively, the smallest upper and lower sets containing x {\displaystyle x} as an element. More generally, given a subset A ⊆ X , {\displaystyle A\subseteq X,} define the upper/upward closure and the lower/downward closure of A , {\displaystyle A,} denoted by A ↑ X {\displaystyle A^{\uparrow X}} and A ↓ X {\displaystyle A^{\downarrow X}} respectively, as A ↑ X = A ↑ = ⋃ a ∈ A ↑ a {\displaystyle A^{\uparrow X}=A^{\uparrow }=\bigcup _{a\in A}\uparrow \!a} and A ↓ X = A ↓ = ⋃ a ∈ A ↓ a . {\displaystyle A^{\downarrow X}=A^{\downarrow }=\bigcup _{a\in A}\downarrow \!a.}
In this way, ↑ x =↑ { x } {\displaystyle \uparrow x=\uparrow \{x\}} and ↓ x =↓ { x } , {\displaystyle \downarrow x=\downarrow \{x\},} where upper sets and lower sets of this form are called principal. The upper closure and lower closure of a set are, respectively, the smallest upper set and lower set containing it.
The upper and lower closures, when viewed as functions from the power set of X {\displaystyle X} to itself, are examples of closure operators since they satisfy all of the Kuratowski closure axioms. As a result, the upper closure of a set is equal to the intersection of all upper sets containing it, and similarly for lower sets. (Indeed, this is a general phenomenon of closure operators. For example, the topological closure of a set is the intersection of all closed sets containing it; the span of a set of vectors is the intersection of all subspaces containing it; the subgroup generated by a subset of a group is the intersection of all subgroups containing it; the ideal generated by a subset of a ring is the intersection of all ideals containing it; and so on.)
An ordinal number is usually identified with the set of all smaller ordinal numbers. Thus each ordinal number forms a lower set in the class of all ordinal numbers, which are totally ordered by set inclusion.
Dolecki & Mynard 2016, pp. 27–29. - Dolecki, Szymon; Mynard, Frédéric (2016). Convergence Foundations Of Topology. New Jersey: World Scientific Publishing Company. ISBN 978-981-4571-52-4. OCLC 945169917. https://search.worldcat.org/oclc/945169917 ↩
Brian A. Davey; Hilary Ann Priestley (2002). Introduction to Lattices and Order (2nd ed.). Cambridge University Press. pp. 20, 44. ISBN 0-521-78451-4. LCCN 2001043910. 0-521-78451-4 ↩
Stanley, R.P. (2002). Enumerative combinatorics. Cambridge studies in advanced mathematics. Vol. 1. Cambridge University Press. p. 100. ISBN 978-0-521-66351-9. 978-0-521-66351-9 ↩
Lawson, M.V. (1998). Inverse semigroups: the theory of partial symmetries. World Scientific. p. 22. ISBN 978-981-02-3316-7. 978-981-02-3316-7 ↩