In order to state the paradox it is necessary to understand that the cardinal numbers are totally ordered, so that one can speak about one being greater or less than another. Then Cantor's paradox is:
This fact is a direct consequence of Cantor's theorem on the cardinality of the power set of a set.
Another consequence of Cantor's theorem is that the cardinal numbers constitute a proper class. That is, they cannot all be collected together as elements of a single set. Here is a somewhat more general result.
Since the cardinal numbers are well-ordered by indexing with the ordinal numbers (see Cardinal number, formal definition), this also establishes that there is no greatest ordinal number; conversely, the latter statement implies Cantor's paradox. By applying this indexing to the Burali-Forti paradox we obtain another proof that the cardinal numbers are a proper class rather than a set, and (at least in ZFC or in von Neumann–Bernays–Gödel set theory) it follows from this that there is a bijection between the class of cardinals and the class of all sets. Since every set is a subset of this latter class, and every cardinality is the cardinality of a set (by definition!) this intuitively means that the "cardinality" of the collection of cardinals is greater than the cardinality of any set: it is more infinite than any true infinity. This is the paradoxical nature of Cantor's "paradox".
While Cantor is usually credited with first identifying this property of cardinal sets, some mathematicians award this distinction to Bertrand Russell, who defined a similar theorem in 1899 or 1901.